
Characteristics and trends in various forms of the Palmer Drought
Severity Index during 1900–2008

Aiguo Dai1

Received 21 December 2010; revised 17 March 2011; accepted 29 March 2011; published 29 June 2011.

[1] The Palmer Drought Severity Index (PDSI) has been widely used to study aridity
changes in modern and past climates. Efforts to address its major problems have led to new
variants of the PDSI, such as the self‐calibrating PDSI (sc_PDSI) and PDSI using
improved formulations for potential evapotranspiration (PE), such as the Penman‐Monteith
equation (PE_pm) instead of the Thornthwaite equation (PE_th). Here I compare and
evaluate four forms of the PDSI, namely, the PDSI with PE_th (PDSI_th) and PE_pm
(PDSI_pm) and the sc_PDSI with PE_th (sc_PDSI_th) and PE_pm (sc_PDSI_pm)
calculated using available climate data from 1850 to 2008. Our results confirm previous
findings that the choice of the PE only has small effects on both the PDSI and sc_PDSI for
the 20th century climate, and the self‐calibration reduces the value range slightly and
makes the sc_PDSI more comparable spatially than the original PDSI. However, the
histograms of the sc_PDSI are still non‐Gaussian at many locations, and all four forms of
the PDSI show similar correlations with observed monthly soil moisture (r = 0.4–0.8)
in North America and Eurasia, with historical yearly streamflow data (r = 0.4–0.9) over
most of the world’s largest river basins, and with GRACE (Gravity Recovery and Climate
Experiment) satellite‐observed water storage changes (r = 0.4–0.8) over most land
areas. All the four forms of the PDSI show widespread drying over Africa, East and
South Asia, and other areas from 1950 to 2008, and most of this drying is due to recent
warming. The global percentage of dry areas has increased by about 1.74% (of global
land area) per decade from 1950 to 2008. The use of the Penman‐Monteith PE and
self‐calibrating PDSI only slightly reduces the drying trend seen in the original PDSI.
The percentages of dry and wet areas over the global land area and six select regions are
anticorrelated (r = −0.5 to −0.7), but their long‐term trends during the 20th century do
not cancel each other, with the trend for the dry area often predominating over that for the
wet area, resulting in upward trends during the 20th century for the areas under extreme
(i.e., dry or wet) conditions for the global land as a whole (∼1.27% per decade) and
the United States, western Europe, Australia, Sahel, East Asia, and southern Africa.
The recent drying trends are qualitatively consistent with other analyses and model
predictions, which suggest more severe drying in the coming decades.
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1. Introduction

[2] Drought is a recurring extreme climate event over land
characterized by below‐normal precipitation over a period of
several months to several years or even a few decades. It is
among the most damaging natural disasters, causing tens of
billions of dollars in damage and affecting millions of people
in the world each year [Wilhite, 2000]. To quantify drought
and monitor its development, many drought indices have
been developed and applied [Heim, 2000, 2002; Keyantash

and Dracup, 2002; Vicente‐Serrano et al., 2010a; Dai,
2011]. Among them, the Palmer Drought Severity Index
(PDSI) is the most prominent index of meteorological
drought used in the United States for drought monitoring and
research [Heim, 2002]. The PDSI and its variants have been
used to quantify long‐term changes in aridity over land in the
20th [Dai et al., 1998, 2004; van der Schrier et al., 2006a,
2006b, 2007; Dai, 2011] and 21st [Burke et al., 2006; Burke
and Brown, 2008; Dai, 2011] century. The PDSI has also
been widely used in tree ring‐based reconstructions of past
droughts in North America and other regions [e.g., Cook et al.,
2004, 2007].
[3] The PDSI was originally developed by Palmer [1965]

with the intent to measure the cumulative departure in sur-
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face water balance. It incorporates antecedent and current
moisture supply (precipitation, P) and demand (potential
evapotranspiration, PE) into a hydrological accounting sys-
tem, which includes a two‐layer bucket‐type model for soil
moisture calculations. The PDSI is a standardized measure,
ranging from about −10 (dry) to +10 (wet) with values below
−3 representing severe to extreme drought. The standardization
used by Palmer was based on limited data from the central
United States and tends to yield more severe PDSI in the Great
Plains than other U.S. regions [Guttman et al., 1992]. To
improve the spatial comparability,Wells et al. [2004] proposed
a self‐calibrating PDSI (sc_PDSI) by calibrating the PDSI
using local conditions, instead of using the (fixed) coefficients
used by Palmer [1965] based on data from the central United
States. The sc_PDSI performed better than the original PDSI
during the 20th century over Europe and North America [van
der Schrier et al., 2006a, 2006b, 2007].
[4] Another major complaint about the PDSI is that the PE

calculated using the Thornthwaite equation [Thornthwaite,
1948] in the original Palmer model could lead to errors
in energy‐limited regions [Hobbins et al., 2008], as the
Thornthwaite PE (PE_th) is based only on temperature, lati-
tude, and month. This error can be minimized, however, by
using the more sophisticated Penman‐Monteith equation
(referred to as PE_pm [Burke et al., 2006]), which accounts
for the effects of radiation, humidity, and wind speed and
works best over Australia in a comparison of various PE
formulations by Donohue et al. [2010]. Palmer [1965] chose
the PE_th mainly based on practical considerations as data
for computing PE_pm and other types of PE might be
unavailable. This is especially true for global analyses.
[5] The PDSI is also imprecise in its treatment of all pre-

cipitation as immediately available rainfall (i.e., no delayed
runoff from melting snow), its lack of impact of vegetation or
frozen soils on evaporation, and some other processes [Alley,
1984]. Despite all these caveats,Dai et al. [2004] showed that
the PDSI values are significantly correlated with measured
soil moisture content in the warm season and streamflow
over many regions over the world and thus can be used as a
measure of drought, especially over the low and middle
latitudes. This is largely due to the fact that the normalization
in the Palmer model minimizes the errors associated with
many of the assumptions made by Palmer [1965] and that
actual evaporation is often determined, to a large degree, by
the availability of soil moisture (and thus affected by pre-
cipitation), not by PE, over many land areas [Willmott et al.,
1985]. Also, using annual values should minimize the sea-
sonal effect of snowfall on the surface water balance.
[6] Recently, the PDSI was criticized for its inability to

depict droughts on time scales shorter than 12 months when
monthly PDSI values were used [Vicente‐Serrano et al.,
2010b]. This is not unexpected as the PDSI was designed
to be strongly autocorrelated in order to account for the
impact of land memory on drought conditions. However, the
Palmer model also computes the unsmoothed Z index, which
can be used to track short‐term agricultural drought, since it
responds quickly to changes in soil moisture, as pointed
out by Karl [1986]. For quantifying long‐term changes in
aridity and droughts, the relatively long intrinsic time scale of
monthly PDSI should not be a problem.
[7] On the positive side, the PDSI is based on a physical

water‐balance model, uses both precipitation and surface air

temperature (and other variables when PE_pm is used) as
input, and takes the precedent condition into account, in
contrast to most other drought indices that are based purely
on past statistics of certain climate variables, which often
include precipitation alone [Keyantash and Dracup, 2002;
Dai, 2011]. The standardized precipitation evapotranspira-
tion index recently developed byVicente‐Serrano et al. [2010a]
considers the difference between precipitation and potential
evapotranspiration. However, as shown below, it is the actual
evapotranspiration (E), not the PE, that affects the surface
water balance and thus the drought conditions. And because
the PE and E are often decoupled or even anticorrelated over
many water‐limited land areas [Brutsaert, 2006] where
drought studies are most relevant, a physical model is nec-
essary to calculate current moisture condition near the sur-
face, from which (and the precedent states) a good drought
index may be derived.
[8] From this perspective, the PDSI and sc_PDSI may be

considered superior to other statistically based drought indi-
ces. This is because the PDSI and sc_PDSI can account for
the basic effect of global warming through Palmer’s water
balance model on droughts and wet spells. The effect of
global warming may have already occurred during the 20th
century [Dai et al., 2004; van der Schrier et al., 2006a,
2006b; Dai, 2011] and may increase substantially in the 21st
century [Burke and Brown, 2008; Dai, 2011]. The effect of
surface temperature, which accounts for 10%–30% of PDSI’s
variance during the 20th century, comes mainly through
potential evapotranspiration. As precipitation and surface air
temperature are the only two climate variables with long
historical records, the PDSI makes full use of these data and
can be readily calculated for the last hundred years or so for
most land areas [Dai et al., 2004; Dai, 2011].
[9] Despite its wide applications, the characteristics and

performance of the original and modified versions of the PDSI
(i.e., PDSI and sc_PDSI with PE_th versus with PE_pm) have
not been well examined over the global land. In particular, the
impact on long‐term trends in the PDSI during the 20th century
by the above‐mentioned modifications has not been well
studied, although some comparisons between the PDSI and
sc_PDSI and the impact of PE_pm on the resulting PDSI have
been discussed [e.g., Burke et al., 2006; van der Schrier et al.,
2006a, 2006b]. In particular, van der Schrier et al. [2011]
examined the impact of the PE_th and PE_pm on the
sc_PDSI and found that the choice of the PE has a small effect
because of the insensitivity of the required precipitation (see
equation (2) below) to the PE in the Palmer model. The goal
of this study is to compare the characteristics of the various
forms of the PDSI, evaluate their performance as a drought
index using available historical records of soil moisture and
streamflow, compare trends in the different forms of the PDSI
during the 20th century, and investigate the drying effect of
recent warming. The results should help us better understand
the various Palmer drought indices and the aridity changes in
the 20th and 21st centuries.
[10] This study follows the general approach and updates

the analysis of Dai et al. [2004], who evaluated the perfor-
mance of the traditional PDSI and examined its long‐term
changes. As a result, some of the figures presented below look
similar to those in the work of Dai et al. [2004]. However,
besides including new data for 2003–2008, this study pre-
sents new results on the characteristics of the various forms of
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the PDSI, the performance of and changes in the other forms
of the PDSI, and comparisons with Gravity Recovery and
Climate Experiment (GRACE) satellite data and with land‐
model simulated soil moisture changes. Furthermore, the
forcing data for precipitation of recent decades in this
study are from a source different from that used by Dai et al.
[2004].
[11] Below, I first describe the data sets used in this study in

section 2, followed by a description of the relevant aspects of
the various forms of the PDSI and their characteristics in
section 3. Section 4 presents a comparison with observed soil
moisture and streamflow, and GRACE data. Leading modes
of variability and long‐term changes in the PDSI and per-
centage of dry and wet areas are discussed in section 5. A
summary is given in section 6.

2. Data Sets

[12] Any drought index is useful only to the extent that the
forcing data used to compute it can be trusted. This point is
becoming increasingly relevant as demands increase for
drought and other climate data with a long record length and
high spatial resolution. However, historical observations are
sparse or simply unavailable for temperature, precipitation,
and other meteorological variables over many land areas,
especially in the Southern Hemisphere and before around
1950. Some analysis data sets, such as the widely used 0.5°
product (CRU TS2.1 and other versions) from the Climatic
Research Unit (CRU; http://www.cru.uea.ac.uk/cru/data),
used station data several hundred kilometers (for precipita-
tion) to over 1000 km (for temperature) away from the grid
box to derive the gridded values, or simply filled with long‐
term climatological values when such “nearby” observations
were unavailable. The face values from this gridded data set
were often used as real observations with the nominal tem-
poral and spatial resolution to derive drought indices or drive
land surface models that could lead to misleading results.
Here I devoted considerable efforts to compare and derive the
forcing data for calculating the PDSI and sc_PDSI.

[13] Table 1 summarizes the data sets used in this study for
calculating and evaluating the PDSI and sc_PDSI. Although
some areas (such as parts of Europe and the United States)
have data for computing the PDSI and sc_PDSI since 1850,
most of the world does not have climate data before 1900, and
many areas do not have data before around 1950. For com-
puting monthly values for the (original) PDSI and sc_PDSI
using PE_th, referred to as PDSI_th and sc_PDSI_th here-
after, only monthly data for surface air temperature (T) and P
are needed. Here I derived the monthly T from 1850 to 2008,
as done by Dai et al. [2004], by combining the CRUTEM3
anomalies [Brohan et al., 2006] and the CRU 1961–1990
climatology, both from http://www.cru.uea.ac.uk/cru/data/
temperature/.
[14] For monthly P over land from 1850 to 2008, there is no

single data set that covers the entire period. After evaluating
various P data sets, I derived the P data by merging the
monthly anomaly data from Dai et al. [1997] for the period
1850–1947, fromChen et al. [2002] for 1948–1978, and from
Huffman et al. [2009] (Global Precipitation Climatology
Project (GPCP) v2.1) for 1979–2008. Themergingwas done by
removing the mean difference over a common data period
(1979–1996) between the Huffman et al. and Chen et al. data
sets from the Chen et al. P over the 1948–1978 period, and
by adding the 1979–1996 mean of Huffman et al. to the
P anomalies of Dai et al. (adjusted to be relative to the 1979–
1996 mean) for 1850–1947. I noticed a large decline in the
rain gauge number since 1997 in the Chen et al. data set,
which led me to use the whole GPCP data set from 1979
to 2008. This is different from Dai et al. [2004], who used
the P data from Chen et al. [2002] for all years since 1948.
I also examined the newly released Global Precipitation Cli-
matology Centre (GPCC) v4 gridded land precipitation data
from 1901 to 2007 (ftp://ftp‐anon.dwd.de/pub/data/gpcc/html/
fulldata_download.html). I found that for the period since
around 1950, the GPCC v4 showed changes similar to our
merged precipitation data, but for 1901–1949, the GPCC v4
showed different change patterns that are inconsistent with
previous analyses [e.g., Dai et al., 1997]. Unlike Dai et al.

Table 1. Data Sets Used in This Studya

Variables Type and Coverage Resolution Period Source and Reference

Precipitation Rain gauge, land 2.5° × 2.5° 1850–2008 Dai et al. [1997], Chen et al. [2002],
Huffman et al. [2009]

Surface air temperature Surface observations, land 2.5° × 2.5° 1850–2008 CRUTEM3; Brohan et al. [2006]
Surface wind speed,

humidity, and air
pressure

Reanalysis data 2.5° × 2.5° 1948–2008; climatology
for other years

Kalnay et al. [1996], Qian et al. [2006]

Cloud cover Surface observations, land 2.5° × 2.5° 1948–2004; climatology
for other years

Dai et al. [2006], Qian et al. [2006]

Net surface solar radiation Observations and CLM3‐ based
estimates

2.5° × 2.5° 1948–2004; climatology
for other years

Qian et al. [2006]

Streamflow Gauge, 230 rivers Yearly 1948–2004 NCAR; Dai et al. [2009]
Soil moisture Station observations Monthly 10–21 years Robock et al. [2000]

Illinois 19 stations 1981–2001 Hollinger and Isard [1994]
China 43 stations 1981–1991 Robock et al. [2000]]
Mongolia 42 stations 1978–1993 Robock et al. [2000]
Former USSR 50 stations 1972–1985 Vinnikov and Yeserkepova [1991]

Liquid water equivalent
thickness

GRACE satellite observations,
global land

1° × 1° Apr 2002 to Dec 2010 Swenson and Wahr [2006];
http://grace.jpl.nasa.gov/

Soil water‐holding capacity Derived 1° × 1° Climatology Webb et al. [1993]

aAll are monthly except stated otherwise.
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[1997], the GPCC v4 product has data over areas without
rain gauges nearby, often filled with climatological values that
make it difficult to assess which regions had no observations
and thus should be skipped in the analysis.
[15] All the P data sets were on the same 2.5° latitude ×

2.5° longitude grid as used for the PDSI calculations. The
CRUTEM3 T anomaly values were on a 5° grid. I simply
assigned the 5° grid‐box value to the four 2.5° grid boxes
within each 5° box. The CRU monthly T climatology was
on a 0.5° grid. I simply averaged them onto the 2.5° grid.
I realize that data for both T and P before around 1950
contain large errors or are unavailable over many regions
besides Europe and the United States. I assigned a missing
data code to the PDSI whenever T or P data were unavail-
able (mainly for years before 1948).
[16] For computing the PDSI and sc_PDSI using the

Penman‐Monteith PE (PE_pm, based on equation (4.1.14)
of Shuttleworth [1993]), referred to as PDSI_pm and
sc_PDSI_pm hereafter, additional data for surface net radi-
ation, humidity, wind speed, and air pressure are needed.
There are no station‐data‐based analysis products for these
variables, except for surface humidity for which CRU has
created a 0.5° product from 1901 to 2002 for surface vapor
pressure [Mitchell and Jones, 2005]. However, many land
areas in the CRU product had no observations and were
filled with long‐term mean values. Furthermore, the station
data used for the 0.5° CRU product were not as vigorously
checked for temporal inhomogeneity as for the CRUTEM3
data set. For these reasons, I simply used the gridded data
from 1948 to 2008 for surface‐specific humidity, wind speed,
and air pressure from the National Centers for Environmental
Prediction/National Center for Atmospheric Research (NCEP/
NCAR) reanalysis [Kalnay et al., 1996]. In addition, we used
surface net solar radiation from the Community Land Model
version 3 (CLM3) simulation [Qian et al., 2006], in which
observed cloud cover [from Qian et al., 2006] was used
to estimate surface downward solar radiation. Surface net
longwave radiation was estimated using surface air temper-
ature, vapor pressure, and observed cloud fraction [Dai et al.,
2006] based on equation (4.2.14) of Shuttleworth [1993].
Since data before 1948 for these additional surface variables
are not readily available over most land areas, I simply used
the long‐term mean values for years before 1948. Thus, the
PDSI_pm and sc_PDSI_pm before 1948 contain no addi-
tional variations compared to PDSI_th and sc_PDSI_th,
respectively. I realize that large uncertainties likely exist in
these surface data, especially for surface wind speed and
radiation, as high‐quality data for these fields are unavail-
able over the global land. Because of this, the PDSI_pm and
sc_PDSI_pm results may not fully reflect the impact of the
actual changes in wind speed [Roderick et al., 2007] and
radiation on aridity [Donohue et al., 2010] since 1950.
[17] As in the studies by Dai et al. [1998, 2004], I used

the soil texture‐based estimate of the water‐holding capacity
map from Webb et al. [1993]. Tests showed [Dai et al.,
1998] that the PDSI is not sensitive to the holding capac-
ity values, presumably due to the normalization used in the
Palmer model.
[18] Drought is often associated with dry soils and below‐

normal streamflow [Dai, 2011]. Thus, I evaluate the per-
formance of the PDSI and sc_PDSI as a measure of drought
by correlating area‐averaged PDSI and sc_PDSI values with

available records of soil moisture observed over Illinois in
the United States and regions in Eurasia [Robock et al.,
2000] and observed streamflow for the world’s largest
230 rivers [Dai et al., 2009] (Table 1). Here I also did a
correlative analysis between the monthly anomalies of
GRACE satellite‐observed liquid water equivalent thickness
[Swenson and Wahr, 2006] and the various forms of the
PDSI. Although the GRACE satellite measures variations
in both groundwater and soil moisture [Swenson et al.,
2006], we expect a positive correlation between the two
as severe droughts can reduce both soil moisture and
groundwater levels.

3. Characteristics of Different Forms of the PDSI

3.1. Formulation of the PDSI

[19] Here I briefly describe the relevant aspects of the
PDSI and sc_PDSI formulations. More details can be found
in the studies by Palmer [1965], Alley [1984], Karl [1986],
and Wells et al. [2004].
[20] Besides P, Palmer [1965] considered four other sur-

face water fluxes: E, recharge to soils (R), runoff (RO), and
water loss to the soil layers (L), and their potential values PE,
PR, PRO, and PL, respectively. Then Palmer introduced the
concept of the climatically appropriate for existing conditions
(CAFEC) values. To do that, he first defined the following
water‐balance coefficients calculated using local climate
(often over a calibration period, which is 1950–1979 in this
study) for each month i:

�i ¼ Ei

PEi
�i ¼ Ri

PRi
�i ¼ ROi

PROi
�i ¼ Li

PLi
; ð1Þ

where the overbar indicates averaging over the calibration
period. Thus, these coefficients represent the ratio of the long‐
termmean values between a water flux and its potential value.
The CAFEC values are simply the product of the potential
value of a water flux times its coefficient, e.g., ai PE for
CAFEC evapotranspiration. In particular, the CAFEC pre-
cipitation (P̂), which represents the amount of precipitation
needed to maintain a normal soil moisture level for a given
time, is defined as

P̂ ¼ �i PE þ �i PRþ �i PRO� �i PL: ð2Þ

The difference between the actual precipitation in a given
month and the computed P̂ for the samemonth is the moisture
departure (D = P − P̂) for the month. Obviously, a given value
of D can have different meanings for the surface water bal-
ance at different locations and different times of the year. To
correct that, Palmer multiplied D by a climatic characteristic
coefficient K to derive the moisture anomaly index or the
Z index (Z = D K), where K for month i is defined by Palmer
using data from the central United States as follows:

Ki ¼ Ko Ki′ ¼ 17:67
P12
i¼1

Di Ki′
Ki′ and

Ki′ ¼ 1:5 log10

PEiþRiþROi

PiþLi
þ 2:8

Di

0
@

1
Aþ 0:5: ð3Þ
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The Z index is then used to compute the PDSI value for time
t (Xt):

Xt ¼ p Xt�1 þ q Zt ¼ 0:897 Xt�1 þ Zt=3; ð4Þ

whereXt‐1 is the PDSI for the previous month. The use ofKi is
to allow comparisons of PDSI values over different time and
space. The p and q coefficients in (4) are called duration
factors, which determine how sensitive the PDSI is to the
monthly moisture anomaly Zt and how much autocorrelation
the PDSI has. Palmer [1965] derived the values of p = 0.897
and q = 1/3 using the linear slope between the length and
severity of the most extreme droughts that he studied in
Kansas and Iowa.
[21] To make the PDSI more comparable spatially, Wells

et al. [2004] proposed a new method to calculate K (more
specifically, Ko in (3)), p, and q using local climate condi-
tions, so that the PDSI has more comparable histograms
across different locations and the duration factors p and q
reflect the local slope between the length and severity of the
most extreme droughts. However, one still needs to make
certain choices regarding the exact length over which the
regression for the slope is done and how the extreme
drought spells are selected. Wells et al. [2004] did not dis-
cuss these issues. I tested three different methods for doing
the length versus severity regression that determines the
p and q values and found that the results are not very sen-
sitive to these methods (see Appendix A for details). Here
I used the results from one of the methods (i.e., method 2)
in the following.

3.2. Potential Evapotranspiration

[22] Another key aspect of the PDSI is how the PE is
computed in the Palmer model. Mainly based on practical
considerations, Palmer [1965] used the Thornthwaite [1948]
equation to compute the PE as a function of monthly mean
surface air temperature, latitude, and month. There are criti-
cisms of the PDSI computed using the PE_th because the
PE_th may overestimate the impact of surface temperature on
PE [Trenberth et al., 2007, p. 261; Hobbins et al., 2008]. To
investigate the impact of different PE calculations on the
PDSI and sc_PDSI, here I also used themore physically based
Penman‐Monteith equation to compute the PE. The for-
mulations for the PE_th and PE_pm are given in Appendix B.
[23] Figures 1a and 1b show that the PE_th and PE_pm

exhibit different decadal change patterns from 1950–1969
to 1985–2004, and the impact without temperature changes
(Figures 1c and 1d) also differs substantially for the two
different PE estimates. However, for the actual evapotrans-
piration (Figures 1e–1h) estimated by the Palmer model, the
choice of the PE formulation has relatively small effects,
mainly because E is often limited by the available moisture on
the ground. Because it is E, not PE, that affects the surface
water balance, and also because of the normalization used
in the Palmer model (see equations (1)–(3)), the PDSI of
the 20th century is not very sensitive to the choice of the PE
parameterization, as shown below and by van der Schrier
et al. [2011]. However, for the model‐projected 21st cen-
tury climate with large increases in surface temperature, I
found that the PE_th overestimates the impact of rising
temperatures and results in much larger PDSI decreases
than using PE_pm [Dai, 2011]. These findings are consistent

with conclusions of Burke et al. [2006] and van der Schrier
et al. [2011], who also found that the PDSI of the 20th cen-
tury was similar when either PE_th or PE_pm was used.

3.3. Histograms of the PDSI

[24] Figures 2 and 3 compare the histograms of the monthly
PDSI_pm and sc_PDSI_pm, respectively, at nine grid boxes
around the world during 1900–1979. Some boxes may not
have data for the earlier decades of the period, and years after
1979 are not included because of the recent drying trend.
Histograms for PDSI_th (sc_PDSI_th) are not very different
from those for PDSI_pm (sc_PDSI_pm) at most of the loca-
tions. It can be seen that the PDSI and sc_PDSI ranges vary
from location to location, and the shape of the distributions
can differ substantially from Gaussian at some locations such
as the Amazonian and southern Indian boxes. The normali-
zation to local climate in sc_PDSI improves the symmetry of
the distributions, but it is still not Gaussian at some locations
(e.g., the Amazon), and this problem exists even for the his-
tograms of the calibration period (1950–1979). The value
range of the sc_PDSI becomes more comparable among the
different locations, generally within −6 to +6, whereas the
range for the original PDSI varies considerably from one
location to another, making it less comparable spatially. Thus,
the sc_PDSI is indeed improved over the original PDSI in
terms of spatial comparability, but it is still not symmetrically
distributed around the neutral (i.e., zero) line at some locations.

4. Evaluation of the PDSI

[25] As a drought index, the PDSI and sc_PDSI, when
averaged over a region, should correlate with other observed
measures of drought, such as soil moisture and streamflow,
which are often used to define agricultural and hydrological
droughts, respectively [Dai, 2011]. Figures 4 and 5 summa-
rize the correlation between the available data of soil moisture
monthly anomalies (Table 1) and the different forms of the
PDSI averaged over various regions in Eurasia and the United
States. It can be been that all the forms of the PDSI are sig-
nificantly correlated with the observed soil moisture varia-
tions within the top 1 m depth, especially over Illinois (r up
to 0.84), parts of the former Soviet Union (r up to 0.77), and
East China (r up to 0.73). Furthermore, the correlations for
the four different forms of the PDSI are similar, perhaps
except for PDSI_pm over Illinois, which has a lower corre-
lation than the other three forms.
[26] Figures 6–8 summarize the correlation between

observed yearly streamflow and the different forms of the
PDSI averaged over each of the world’s 230 largest river
basins that I can define and for which I have streamflow data
[see Dai et al., 2009]. It is necessary to use yearly data as
precipitation may take weeks to months to contribute to the
streamflow. It can be seen (Figure 6) that the basin‐averaged
PDSI_th and sc_PDSI_pm both covary with the observed
streamflow variations on interannual to decadal time scales
for the world’s largest rivers, except for Yenisey where the
streamflow trend is not reflected in precipitation [Dai et al.,
2009] and thus also not reflected by the PDSI. Figure 7 shows
that basin‐averaged PDSI_pm (and the other forms) is sig-
nificantly correlated (r = 0.4–0.9) with the observed stream-
flow over the majority (87%) of the top 230 rivers in the world.
The low correlation over the remaining 13% of the river basins
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Figure 1. Changes in (a‐d) potential evapotranspiration (mm/d) and (e‐h) evapotranspiration (in units of
0.5 mm/d) from 1950–1969 to 1985–2004 calculated using the Thornthwaite (Figures 1a, 1c, 1e, and 1g)
and Penman‐Monteith (Figures 1b, 1d, 1f, and 1h) equations. Figures 1a, 1b, 1e, and 1f are cases with all
atmospheric forcings, while Figures 1c, 1d, 1g, and 1h are cases with all except the temperature changes.
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Figure 2. Histograms of monthly PDSI_pm during 1900–1979 at nine individual 2.5° × 2.5° grid boxes.
The calibration period is 1950–1979.
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Figure 3. Same as Figure 2 but for sc_PDSI_pm. To increase the comparability of the shapes of the his-
tograms in Figures 2 and 3, the same number of bins (not the same intervals for the bins) is used in Figures 2
and 3 given the same sample size and different value ranges between the PDSI_pm and sc_PDSI_pm cases.
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Figure 4. Scatterplots of monthly anomalies over Illinois from 1981 to 2001 of observed soil moisture
content within the top 0.9 m depth against the PDSI with PE calculated using the (a) Thornthwaite
(PDSI_th) and (b) Penman‐Monteith (PDSI_pm) equations, (c) self‐calibrated PDSI with Thornthwaite
PE (sc_PDSI_th), and (d) self‐calibrated PDSI with Penman‐Monteith PE (sc_PDSI_pm). The correlation
coefficient (r) is also shown. The plus, open circle, cross, asterisk, and solid circle are for months 5, 6, 7,
8, and 9, respectively. There are insufficient soil moisture data for the other months.

Figure 5. Correlation coefficients between monthly anomalies of observed soil moisture (see Table 1)
and four different forms of the PDSI (see Figure 6 for their definitions) averaged over 12 regions where
soil moisture data are available. Some cold months have no soil moisture data and are thus not included in
the calculations. See Table 2 of Dai et al. [2004] for the definition of the regions, the number of stations
with soil moisture observations, and the months included.
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Figure 6. Time series of observed water‐year (1 October to 30 September) streamflow (km3 yr−1, solid
line) at the farthest downstream station for the world’s six largest rivers compared with basin‐averaged
PDSI_th (short dashed line) and sc_PDSI_pm (long dashed line). The lines for PDSI_pm are similar to those
for sc_PDSI_pm and thus are not shown. The correlation coefficients (r) are for streamflow versus, from left
to right, PDSI_th, PDSI_pm, and sc_PDSI_pm. Note the streamflow for Yenisey was detrended before the
correlation analysis (same for Figures 7 and 8).
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could result from factors not considered in the Palmer model,
such as human withdrawal of stream water or changes in land
water storage. Figure 8 shows that the low correlation exists
mainly in the arid areas, where direct human influence on
streamflow is large [Milliman et al., 2008], and Siberia, where
permafrost thawing may have contributed to observed
streamflow changes [Dai et al., 2009]. Figure 8 further illus-
trates that the different forms of the PDSI correlate similarly
with observed streamflow for world’s largest river basins.
Furthermore, the PDSI is correlated with observed streamflow
over many high‐latitude regions, despite that snow and other
cold land processes are not explicitly treated in the Palmer
model. This result is consistent with the significant correlation
with observed soil moisture over Russia, Mongolia, and
northern China (Figure 5).
[27] Figure 9 shows the maps of the correlation coefficient

(r) from April 2002 to December 2008 between the monthly
anomalies of GRACE satellite‐observed liquid water equiv-
alent thickness and the PDSI_th, PDSI_pm, and sc_PDSI_pm
(similar for sc_PDSI_th; not shown). It can be seen that the
different forms of the PDSI are similarly and positively cor-
related with the variations in GRACE‐measured water thick-
ness over most land areas, with the r ranging from 0.4 to 0.8.
The correlation is low (below 0.4) and insignificant over
northern Africa, northern India, parts of the Middle East,
central and northern Asia, and a few other areas. Since this
is a correlation at the local grid box level, we expect some
areas to have lower correlations because of poor sampling of
precipitation and other forcing data used for computing the
PDSI. Also, continuing human withdrawal of groundwater
for domestic, agricultural, and other usages in arid regions
such as central North China, northern India, and the Middle
East likely have affected the GRACE measurements, while it
has little effect on the climate‐derived PDSI values. Tests
showed that the correlation becomes positive over northern

India when the GRACE data were detrended. This suggests
that the GRACE data contain human‐induced variations
and changes that are not considered in the climate‐driven
PDSI values. Thus, low correlations should be expected
over arid and other regions where such human influences are
significant.
[28] Thus, I conclude that the different forms of the PDSI

can all capture many of the observed variations and changes
in soil moisture and streamflow during the latter half of the
20th century around the world including many cold regions,
and neither the use of Penman‐Monteith PE nor the self‐
calibration proposed by Wells et al. [2004] significantly
improves the PDSI’s ability to capture the observed soil
moisture and streamflow variations. Furthermore, the dif-
ferent forms of the PDSIs are similarly correlated with sat-
ellite‐observed variations in terrestrial water storage during
recent years. As stated above, however, the sc_PDSI does
become more comparable spatially, and the use of PE_pm is
necessary for the model‐projected 21st climate.

5. Historical Variations and Changes in the PDSI

5.1. Leading Modes of Variability

[29] Figure 10 shows the two leading modes of variability
from an empirical orthogonal function (EOF) analysis of
monthly sc_PDSI_pm (similar for PDSI_pm) from 1900 to
2008. These modes are comparable to those for the original
PDSI (i.e., PDSI_th) shown previously by Dai et al. [2004]
and Dai [2011], although the red colors (i.e., drying) for
EOF 1 (Figure 10b) are slightly less widespread compared
with the PDSI_th case. In other words, the use of the PE_pm
slightly reduces the drying effect of recent warming over land.
Nevertheless, the first mode still represents a long‐term trend
(Figure 10a; mainly since ∼1950) of drying over Africa, East
and South Asia, southwestern Europe, and eastern Australia

Figure 7. Scatterplot of the correlation coefficient between observed downstream water‐year river flow
and PDSI_pm during 1948–2004 against the river drainage area for the world’s top 230 rivers. Asterisks
(∼200) indicate the correlation is statistically significant at the 5% level, while the open circles (∼30) are
insignificant. Plots for PDSI_th, sc_PDSI_th, and sc_PDSI_pm are similar.
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and wetting over the continental United States, Argentina,
northern Europe, and parts of northern Asia. The second
mode is associated with the El Niño‐Southern Oscillation
(ENSO), since its temporal time series is correlated with an
ENSO index (Figure 10c, red line) and its spatial patterns
(Figure 10d) is comparable to those of ENSO‐induced pre-
cipitation [Dai andWigley, 2000]. This ENSO‐induced mode
is very stable in all the forms of the PDSI, as well as in the
previous versions of the PDSI [Dai et al., 2004; Dai, 2011],
although the principal component (PC) series since the late
1990s is slightly lower than expected from the ENSO index
(Figure 10c). Thus, the two leading EOFs represent two dis-
tinct modes of variability in the global PDSI that are inde-

pendent of the choice of the forcing data sets and the form of
the PDSI.

5.2. Long‐Term Trend in Global Aridity and the Effect
of Surface Warming

[30] In this subsection, I focus on the period after 1950
since many of the global land areas have no climate records
before about 1950, except western Europe, the United States,
and a few other regions (see section 5.3). Figures 11a–11d
show that the trend patterns during 1950–2008 in the four
forms of the PDSI are similar, although the magnitude of the
drying trend over many regions (e.g., Africa and East Asia) is
smaller for the self‐calibrated PDSI than for the original

Figure 8. Maps of correlation coefficients between the observed water‐year downstream river flow and
(a) PDSI_th, (b) PDSI_pm, and (c) sc_PDSI_pm averaged over the world’s large river basins during
1948–2004. Blank areas indicate a lack of sufficient data.
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PDSI. This results mainly from the reduced PDSI range
during the self‐calibration (see Figures 2 and 3). Furthermore,
the use of the two different PE formulations results in only
small differences in the PDSI trends, with slightly less drying
(e.g., over central South America) for the PE_pm cases. This
result is consistent with that of van der Schrier et al. [2011],
who showed very small differences in the trends of their

sc_PDSI_th and sc_PDSI_pm during 1901–2006. Also, many
of the trend patterns (e.g., drying over West Africa, south-
western Europe, and East Asia and wetting over Argentina
and most of western Australia) are consistent between our
Figures 11c and 11d and their Figure 3, although more quan-
titative comparisons require examining for the same time
period.

Figure 9. Maps of correlation coefficients between monthly anomalies of GRACE satellite‐observed
liquid water equivalent thickness and (a) PDSI_th, (b) PDSI_pm, and (c) sc_PDSI_pm at each 2.5° ×
2.5° land box from April 2002 to December 2008. Values above about 0.4 or below −0.4 are statistically
significant at the 5% level.
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[31] All four forms of the PDSI show widespread drying
during 1950–2008 over much of Africa, Asia, southern
Europe, eastern Australia, midlatitude Canada, and south-
eastern Brazil, whereas much of the continental United
States, Argentina, western Australia, and the Tibetan Plateau
has become wetter from 1950 to 2008. These long‐term
trends may differ from what has happened during the most
recent years. For example, over the United States, drought
has become more widespread during the last 10 years (see
below), which is a reversal of the longer‐term trend. The
drying trend over West and central Africa and East China
reaches −2 to −4 per 50 years, which is large considering
that drought starts when the PDSI is below −1 [Palmer,
1965]. The PDSI drying patterns over Africa, southeastern
Asia, eastern Australia, the Mediterranean region, and
midlatitude Canada are qualitatively consistent with the
observed streamflow decreases over these regions (see
Figure 5c of Dai [2011]).
[32] To estimate the direct impact of recent warming on

the PDSI trends, I computed the four forms of the PDSI with

all the forcing except temperature changes, i.e., monthly
temperature climatology was used for this dT = 0 case. I
realize that in the real world, changes in precipitation and
other surface fields are coupled to temperature changes.
Here I used the dT = 0 case only to illustrate the direct
impact of recent warming on PDSI through its influence
on PE.
[33] Figure 11 compares the 1950–2008 trend patterns

between the all forcing and dT = 0 cases. It can be seen that
without the surface warming, most of the drying (i.e, red
areas) seen in the all forcing case (Figures 11a–11d) dis-
appears in the dT = 0 case (Figures 11e–11h), except for
some areas in Africa, East Asia, and eastern Australia,
where the drying resulted, to a large extent, from precipi-
tation decreases. Without the effect of surface warming,
most of the land areas in Eurasia and North and South
America would have become wetter (Figures 11e–11h). For
the PDSI_pm and sc_PDSI_pm cases, this wetting trend is
slightly enhanced, compared with the PDSI_th and
sc_PDSI_th cases (in which surface humidity is not part of

Figure 10. (a, c) Temporal (black) and (b, d) spatial patterns of the two leading EOFs of monthly
sc_PDSI_pm from 1900 to 2008 (normalized by its standard deviation prior to the EOF analysis). Red
(blue) areas are dry (wet) for a positive temporal coefficient on the corresponding PC time series (e.g.,
the red (blue) areas in Figure 10b represent a drying (moistening) trend whose temporal pattern is shown
in Figure 10a). Variations on <2 year time scales were filtered out in plotting Figures 10a and 10c (but
retained in the EOF analysis). Also shown in Figure 10c is the normalized Darwin mean sea level pressure
anomaly shifted to the right (i.e., lead) by 6 months to obtain a maximum correlation (r = 0.67) with the
PC 2 time series. The percentage variance explained by the EOF is shown at the top of Figures 10a and
10c. The product of the PC and EOF coefficients is the sc_PDSI_pm anomaly (in units of 0.1 SD) repre-
sented by the EOF mode. Similar PCs and EOFs are seen in PDSI_pm and PDSI_th.
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the forcing), by the decreased evapotranspiration because of
reduced water vapor deficits as surface vapor pressure in-
creases in the forcing data while the saturation vapor pres-
sure was fixed (to that for climatological temperature). This,
of course, cannot happen in the real world as the surface‐
specific humidity and temperature are tightly coupled [Dai,
2006]. Nevertheless, the similar differences between the all
forcing and dT = 0 cases for all four PDSI forms shown in

Figure 11 suggest that recent warming, rather than precipi-
tation and other changes, is responsible for much of the
drying trend over many land areas.
[34] The effect of recent warming on the PDSI is further

illustrated in Figure 12, which shows the PDSI difference
between the all forcing and dT = 0 cases averaged over
2000–2008. For all four forms of the PDSI, the differences
are largest over central and northern Eurasia, northern North

Figure 11. Trend maps (red, drying, change per 50 years) in the four forms of the annual PDSI from
1950 to 2008 computed using (a, b, c, d) all forcing data and (e, f, g, h) all but no temperature changes
forPDSI_th (Figures 11a and 11e), PDSI_pm (Figures 11b and 11f), sc_PDSI_th (Figures 11c and 11g0,
and sc_PDSI_pm (Figures 11d and 11h).
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America, and parts of Africa, where surface warming has
been largest (see Figure 5a of Dai [2011]). The differences
are smaller for the self‐calibrated PDSI than the original
PDSI for both the PE_th and PE_pm cases. This is expected
because the self‐calibration reduces the range of the PDSI
values as mentioned in section 3. Also, the PE_pm cases
(Figures 12b and 12d) show larger differences than their
respective cases using PE_th (Figures 12a and 12c). This is
due to the unintended effect of water vapor deficit under
the dT = 0 case, which slightly increases the PDSI_pm and
sc_PDSI_pm for the dT = 0 case, as pointed out for Figure 11.
[35] Figure 13a (colored solid lines) shows that the global

land averaged annual values for the various forms of the PDSI
exhibit substantial decadal variations from the 1950s to the
1970s, with negative anomalies in the 1960s and higher
values in the 1950s and 1970s. Thereafter, a steady down-
ward (i.e., drying) trend is evident in all the forms of the
PDSI. The drying trend since the late 1970s is largest for
the PDSI_th, followed by the sc_PDSI_th (not shown in
Figure 13, but it is only slightly above the red solid line
from 1980 to 2008), with the PDSI_pm and sc_PDSI_pm
showing weaker drying trends. Figure 13a (black solid line)
also shows the global land averaged annual time series of top‐
1 m soil moisture content simulated by a comprehensive land
surface model (namely, CLM3) forced by observation‐based
historical forcing data [see Qian et al., 2006]. The simulated
soil moisture exhibits multiyear and decadal variations and a
drying trend since the 1970s similar to those for the PDSI
curves, although the soil moisture curve, which ends in 2004,
shows an apparent recovery since the late 1990s. This may
result from the use of slightly different precipitation forcing

for the land model [see Qian et al., 2006] and the lack of the
simulated soil moisture data after 2004.
[36] To illustrate the direct effect of temperature changes,

Figure 13a also shows the averaged PDSI time series for the
corresponding dT = 0 cases (dashed lines). It can be seen
that differences between the all forcing and dT = 0 cases
become large since the middle 1980s for all the forms of the
PDSI, especially for PDSI_th and sc_PDSI_th (not shown in
Figure 13). Without the temperature changes, the recent
global drying trends disappear, and the period since the late
1990s becomes wetter than normal for all the forms of the
PDSI.
[37] Consistent with Figure 13a, the percentage of the

global land areas under drought conditions, defined as the
areas within the bottom 20 percentiles of the local PDSI or
simulated soil moisture of the analyzed period (e.g., 1950–
2008 in Figure 13), exhibits variations and trends opposite to
the global‐mean PDSI and soil moisture time series. In par-
ticular, all the cases in Figure 13b show that the global per-
centage of dry area stayed around 14%–20% from 1950 to
1982, when it had a sharp jump (by ∼10%) during the 1982–
1983 El Niño, which reduced precipitation over many land
areas [Dai and Wigley, 2000]. Since 1983, an upward trend is
apparent in all but the PDSI cases without temperature
changes (dashed lines), which show little trend from 1983 to
2008. As for the global‐mean PDSI series (Figure 13a), the
PDSI cases with PE_th exhibit noticeably larger increases in
the percentage dry area than the PDSI cases with PE_pm and
the CLM3 case.
[38] The above results suggest that the use of the Penman‐

Monteith PE, instead of the Thornthwaite PE, indeed reduces

Figure 12. Difference of the four forms of the PDSI between the all forcing case and the dT = 0 case aver-
aged over 2000–2008: (a) PDSI_th case, (b) PDSI_pm case, (c) sc_PDSI_th case, and (d) sc_PDSI_pm case.
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Figure 13. (a) Time series of globally (60°S–75°N) averaged annual anomalies of PDSI_th (red),
PDSI_pm (magenta), and sc_PDSI_pm (green) computed using all forcing (solid lines) and without tem-
perature changes (dashed lines). Also shown is the global‐mean top‐1 m soil water content anomaly from
a land‐model (CLM3) simulation forced with observed precipitation and other historical data [see Qian
et al., 2006]. (b) Same as Figure 13a but for smoothed global percentage dry area, defined as the area
within the bottom 20 percentiles of the monthly PDSI or CLM3 soil moisture at each grid box. Note that
the anomalies in Figure 13a are all relative to the 1950–1977 mean during which global temperature
trends are small and thus the differences between the solid and dashed lines are small.
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the drying impact of recent warming, resulting in smaller
drying trends for the recent decades. This confirms the previ-
ous notion that the (original) PDSI may overestimate the dry-
ing effect of warming due to its use of the PE_th [Trenberth
et al., 2007, p. 261; Hobbins et al., 2008]. Nevertheless, the
PDSI using the Penman‐Monteith PE (i.e., PDSI_pm and
sc_PDSI_pm) still shows substantial drying during recent
decades over many land areas (Figures 11b and 11d) and the
global land as a whole (Figure 13). This result is qualitatively

consistent with those ofBurke et al. [2006] and van der Schrier
et al. [2011], who also found that the PDSI is not very sensitive
to the use of PE_th or PE_pm for the 20th century because the
CAFEC precipitation (equation (2)) is insensitive to the choice
of the PE formulation. Furthermore, this drying is largely due
to recentwarming, especially since themiddle 1980s, as shown
by the PDSI and sc_PDSI values and the percentage of dry
areas calculated using the PDSI with either PE_th or PE_pm
(Figure 13).

Figure 14. Smoothed time series of the percentage dry (dashed line), wet (thin solid line, increases down
on the right ordinate), and dry plus wet (thick solid line) areas over the global (60°S–75°N) land areas.
The dry (wet) areas are defined as the bottom (top) 20 percentiles at each grid box. The sc_PDSI_pm was
used. Results based on the other forms of the PDSI are similar.

Figure 15. Linear trends in the smoothed time series of the percentage dry, wet, and dry plus wet areas
shown in Figures 14 and 16. The trends are based the sc_PDSI_pm, and they are statistically significant at
the 5% level. Results are similar for the other forms of the PDSI, with the drying trend slightly larger
when PE_th is used.
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[39] Besides the dry spells, areas under wet conditions,
defined here as the top 20 percentiles of the PDSI at each
grid box, represent the other end of the moisture extremes
near the surface. Figure 14 shows that the global percentage
wet area varies considerably from ∼15% to 26% and often is
anticorrelated with the percentage dry area (r = −0.45). It
contains a small, but still statistically significant, downward
trend (−0.48% per decade) during 1950–2008 that is not
affected greatly by the end points. In contrast, the global
percentage dry area shows a much larger upward trend

(1.74% per decade) during the same period. The global
combined areas under either dry or wet conditions show a
significant upward trend (1.27% per decade) during 1950–
2008 (Figures 14 and 15).

5.3. Regional Aridity Changes

[40] Figure 16 shows the percentage of dry, wet, and dry
plus wet areas for six select regions with relatively good data
coverage as far back as 1890, with their linear trends shown in
Figure 15. As for the global case shown in Figure 14, the

Figure 16. Time series of the percentage dry (dashed line), wet (thin solid line), and dry plus wet (thick solid
line) areas averaged over six select regions. The dry (wet) areas are defined as the bottom (top) 20 percentiles at
each grid box, and the data coverage was required to be 50% or higher in computing the percentages. Note the
percentage wet area increases downward on the right ordinate. The sc_PDSI_pm was used. Results based the
other forms of the PDSI are similar.
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regional dry andwet areas show large year‐to‐year variations,
and they are often anticorrelated (r = −0.5 to −0.7), which
reduces the variations in the combined dry plus wet area. In all
the regions except the contiguous United States, significant
upward trends are seen in both the dry and dry plus wet areas,
especially for the Sahel, East Asia, and southern Africa
(Figure 15). Over the contiguous United States, precipitation
had increased during the later half of the 20th century [Dai,
2011] partly due to a shift to more frequent El Niños since
the late 1970s [Trenberth and Hoar, 1997]. This led to an
increase in the wet area and a decrease in the dry area from the
1950s to the late 1990s; thereafter, the United States has been
experiencing fairly dry conditions with reduced wet areas and
increased dry areas (Figure 16a). Despite the negative cor-
relation between the dry and wet areas, some of the regions,
such as southern Africa, Australia, and western Europe, show
positive trends for both the dry and wet areas, which results in
an enhanced upward trend in the combined area under either
dry or wet conditions (Figure 15). Other regions (namely the
Sahel, East Asia, and the United States) and the global land as
whole show opposite trends for the dry and wet areas, and this
results in a smaller trend in the combined area (Figure 15).
Figure 16 looks similar to Figure 10 ofDai et al. [2004], who
defined the dry (wet) areas as grid boxes with PDSI_th less
than −3.0 (greater than +3.0).

6. Summary

[41] To provide a quantitative comparison of the various
forms of the PDSI and to update the widely used global PDSI
data set created byDai et al. [2004], I have computedmonthly
values from 1850 to 2008 for four forms of the PDSI over
global land areas on a 2.5° × 2.5° grid (however, many areas
do not have data before 1948), made quantitative compar-
isons among these forms of the PDSI, and evaluated them
using available data of soil moisture, streamflow, and water
storage from the GRACE satellite over land. Leading modes
of variability and long‐term changes in the four forms of
the PDSI were examined and compared, with a focus on the
consistency among the different forms of the PDSI and the
impact of the recent warming and the choice of the PE cal-
culations on the PDSI. The main results and conclusions are
summarized below. They are generally consistent with pre-
vious studies [e.g., Dai et al., 1998, 2004; Burke et al., 2006;
van der Schrier et al., 2006a, 2006b, 2011], althoughmany of
our results are new or more quantitative, e.g., regarding the
differences among the four forms of the PDSI; the correlation
with soil moisture, streamflow, and GRACE data; the con-
sistency with CLM3‐simulated soil moisture; and the impact
of surface warming.
[42] 1. The use of the Penman‐Monteith PE, instead of the

Thornthwaite PE, in the Palmer model only has small effects
on actual evapotranspiration and thus the resultant PDSI, and
it only slightly reduces the widespread drying represented by
the PDSI during recent decades over global land. This result
confirms the finding of van der Schrier et al. [2011], who
found that the sc_PDSI does not change a lot when either
PE_th or PE_pm was used because of the insensitivity of the
CAFEC precipitation (equation (2)) to PE. I realize that large
uncertainties exist in historical data for surface net radiation,
wind speed, and humidity needed for computing the Penman‐
Monteith PE, and further work is needed to improve the

quality of these forcing data. However, it is unlikely that large
long‐term trends in these three variables have occurred since
1950 but are not reflected in our forcing data, partly because
our use of observed cloudiness changes. The small difference
between the PDSI using PE_th and PE_pm suggests that the
effects on the PDSI from long‐term changes in surface net
radiation, wind speed, and humidity are likely small since
1950.
[43] 2. The self‐calibration proposed byWells et al. [2004]

for the sc_PDSI indeed reduces the PDSI range over many
land areas and improves its spatial comparability and the
symmetry of its histograms. However, the monthly sc_PDSI
still has a non‐Gaussian distribution at many locations.
[44] 3. All four forms of the PDSI, namely, PDSI_th,

PDSI_pm, sc_PDSI_th, and sc_PDSI_pm, are significantly
correlated with observed soil moisture (r = 0.4–0.8) over a
number of regions in the United States and Eurasia, and
basin‐averaged yearly PDSI values during 1948–2004 are
correlated (r = 0.4–0.9) with observed yearly streamflow for
87% of the world’s largest 230 river basins for which I had
data. The correlation with the land water storage from
GRACE during 2002–2008 is also similar among the dif-
ferent forms of the PDSI, with an r = 0.4–0.8 over most land
areas. These correlations exist even over many high‐latitude
cold regions, suggesting that the PDSI can be used to depict
yearly aridity changes even at high latitudes. However, it
should be noticed that the evaluation done here using his-
torical records may not be applicable for future climates,
where the impacts of rapidly rising temperatures and down-
ward longwave radiation become increasingly important.
[45] 4. Similar to the leading EOF modes in the original

PDSI using the Thornthwaite PE (i.e., PDSI_th [seeDai et al.,
2004;Dai, 2011]), the first leading mode in the other forms of
the PDSI also depicts a long‐term trend since around 1950 of
drying over most of Africa, East and South Asia, the Medi-
terranean region, eastern Australia, and midlatitude Canada
and wetting over the contiguous United States, Argentina,
western Australia, and parts of central and northern Eurasia;
the secondmode is associated with ENSO,with drying during
El Niños over the South Asia‐Australia region, southern
Africa, and northern South America and wetting over the
southwestern U.S.‐Mexican region, Argentina, East Africa,
and central Eurasia.
[46] 5. All four forms of the PDSI show widespread drying

over Africa, East and South Asia, and other areas from 1950
to 2008, andmost of this drying is due to recent warming. The
global dry areas have increased by about 1.74% (of global
land area) per decade from 1950 to 2008. The use of the
Penman‐Monteith PE and self‐calibrating PDSI only slightly
reduces the drying trend seen in the original PDSI.
[47] 6. The percentages of dry and wet areas over the global

land area and six select regions are anticorrelated (r = −0.5 to
−0.7), but their long‐term trends do not cancel each other. The
trend for the dry area often predominates over that for the wet
area, which results in upward trends for the combined dry and
wet areas. In other words, areas under extreme (i.e., dry or
wet) conditions have increased since 1950 by ∼1.27% per
decade for the global land as a whole, and over all the six
regions examined (Figure 15).
[48] The recent widespread drying trend and the effect of

surface warming are qualitatively consistent with the observed
decreases in streamflow over many low and midlatitude river
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basins [Dai et al., 2009]. Our PDSI trends are broadly com-
parable with those in the soil moisture simulated by another
land surface model [Sheffield and Wood, 2008a]. The results
are also consistent with the model‐predicted 21st century cli-
mate, which shows severe drought conditions by the middle of
this century over most low and midlatitude land areas [Wang,
2005; Sheffield and Wood, 2008b; Dai, 2011]. Thus, I believe
that our main conclusion is robust that recent warming has
caused widespread drying over land. And model predictions
suggest that this drying is likely to become more severe in the
coming decades [Dai, 2011].

Appendix A: Duration and Scaling Factors
for Self‐Calibrated PDSI

[49] As mentioned in section 3.1, Wells et al. [2004]
described the procedures to estimate the duration factors
p and q but did not discuss the details regarding how one
should define the most extreme droughts for estimating the
p and q. Here I discuss the results from our tests using
slightly different methods in estimating these factors. I also
present the global maps for the K scaling factor, namely, Ko

in equation (3).
[50] I tested various lengths for the regression between the

length and (cumulative) severity of the most extreme drought
(Figure A1). I found that, for many locations, consecutive dry
spells usually do not last longer than about 18 months over
our calibration period (1950–1979; results were similar when

1950–1999 was used) and the slopes do not change a lot
beyond this length (Figure A1). Thus, I used the length of
18months in the regression for estimating the duration factors
p and q. I also tested three slightly differentmethods in defining
the driest and wettest spells (i.e., the sum of the Z index in
Figure A1). Method 1 uses all the Z values in the summation
and finds the smallest sum as the Z‐sum value for the driest
spell and the largest sum as the Z‐sum value for the wettest
spell for a given time length (FiguresA1a andA1b).Method 2
uses only the negative (positive) Z values for the summation
for dry (wet) spells, while method 3 uses only the consecutive
negative (positive) Z values in the summation for dry (wet)
spells. As a result, method 3 yields few spells exceeding
18 months (Figures A1c and A1f).
[51] Figures A2a–A2f show that the spatial distributions of

the p and q values for dry cases are similar using methods 1
and 2. For method 3, the p (q) values are slightly lower
(higher) than those frommethods 1 and 2. Although our p and
q values do not differ greatly from Palmer’s original estimates
of p = 0.897 and q = 1/3 using limited data from Kansas and
Iowa, there are considerable spatial variations. In particular,
the q values for the deserts in northern Africa, central Asia,
and southwestern Australia are relatively large due to the lack
of variability in these regions that leads to small Z variations
and thus small sum of the Z index (see Figure A1).
[52] Palmer [1965] used the same duration factors in

equation (4) for both dry and wet spells. For the sc_PDSI,
Wells et al. [2004] used separate duration factors for the
dry and wet cases computed based on the slopes for the dry

and wet cases shown in Figure A1. For the wet cases, the
differences and similarity of the duration factors among
methods 1–3 are comparable to those for the dry cases shown
in Figures A2a–A2f. Thus, I only show the p and q maps
from method 2 for the wet cases in Figures A2g and A2h. It
can be seen that the p (q) values are somewhat larger (smaller)
than those for the dry cases. The sc_PDSI values computed
using methods 1–3 differ only slightly. In this paper, I only
show results using method 2.
[53] For the original PDSI, the climatic characteristic K is

computed using the Ko given in equation (3), whose spatial
distribution is shown in Figure A3a. This Ko is generally
larger at northern mid‐high latitudes and in northern Africa
than in other regions. For the sc_PDSI, Ko is defined as −4/
(the second percentile of the PDSI) for the dry cases and as
+4/(the 98th percentile of the PDSI) for the wet cases (see
equation (9) fromWells et al. [2004]). For comparison, these
Ko values are shown in Figures A3b and A3c. They are much
more homogeneous spatially and comparable to Palmer’s Ko

values over the Midwest United States.

Appendix B: Calculations of PE

[54] Palmer [1965] used the Thornthwaite [1948] equation
to compute the PE as a function of monthly mean surface air
temperature, latitude, and month. I used the following imple-
mentation of the Thornthwaite PE (PE_th, in mm/day) adapted
from the National Climatic Data Center [Karl, 1986]:

PE th ¼
0 for T � 32�F

25:4du exp �3:863233þ 1:715598B� B ln Hð Þ � Bu ln T � 32ð Þ½ � for 32�F < T < 80�F
25:4du sin T=57:3� 0:166ð Þ � 0:76½ � for T � 80�F

8<
: ; ðB1Þ

where T is monthly mean surface air temperature in °F (= 32 +
9/5 t, where t is in °C), � is the latitude, and 8(m) is a month
(m)‐dependent coefficient. B and H are two heat factors cal-
culated as follows.

H ¼
X12
m¼1

max t; 0ð Þ
5

� �1:514

; ðB2Þ

B ¼ 0:492þ 1:79� 10�2H � 7:71� 10�5H2 þ 6:75� 10�7H3:

ðB3Þ

And du in (B1) is defined as

du ¼
do þ 0:0157ð Þ=1:57 if do � 0

3:141593þ doð Þ þ 0:0157½ �=1:57 if do < 0

�
;

where do ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max 0:1; 1� 8 mð Þ tan �ð Þ½ �2

� �r

�8 mð Þ tan �ð Þ

0
BB@

1
CCA: ðB4Þ

A more physically based and widely used formula for com-
puting PE is the Penman‐Monteith equation. Here I used the
version recommended by Shuttleworth [1993].

PE pm ¼ D
Dþ �

Rn þ Ahð Þ þ D
Dþ �

6:43 1þ 0:536U2ð ÞD
�

;

ðB5Þ
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Figure A1. The accumulated Z index over the driest (solid circle and plus) and wettest (open circle and
cross) intervals of varying lengths at a grid box in (a, b, c) the central United States and (d, e, f) East China
computed using three slightly different methods (see Appendix A for details).
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Figure A2. The (a, c, e, g) p and (b, d, f, h) q parameters used in the sc_PDSI calculations for (a‐f) dry cases
using three slightly different methods (Figures A2a‐A2f) and for wet cases using method 2 (Figures A2g
and A2h). The PE_pm was used in the calculations (similar if PE_th was used).
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Figure A3. The Ko scaling factor for (a) both the wet and dry cases in the original Palmer model and for
the (b) dry and (c) wet cases for the sc_PDSI. Data for 1950–1979 and the Penman‐Monteith PE were
used in this calculation.
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where Rn is the net surface radiation, converted to mm day−1,
Ah is the surface horizontal energy convergence (ignored here),
U2 is surface (2 m) wind speed in m s−1, andD is surface vapor
pressure deficit in kPa. The coefficientsD, g, and l are given
by Shuttleworth [1993]. Thus, PE_pm increases with surface
net radiation, wind speed, and vapor pressure deficit. The
Penman‐Monteith PE has been shown to perform better than
other formulations over Australia [Donohue et al., 2010].
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