Climate 2010
The past

• Two, sometimes three components
• Low resolution, spatially and temporally
 – Atmosphere
 • ~500 - 800 km grid (think Montana), 9 vertical levels
 – Ocean
 • 200 km by 200 km grid (1/2 Maine), 20 vertical levels
 – Sea ice (maybe)
 • Same grid as ocean, simple dynamics
• 100 years of model time is ~50 Gigabytes
• Data distribution uncommon, slow, and painful
Climate 2010

The present

• ~Four interactive components
• Higher resolution, spatially and temporally
 – Atmosphere
 • 230 km grid (W Virginia), 18 vertical levels
 – Ocean
 • 100 km grid (2x Delaware), 40 vertical levels
 – Sea ice
 • Same as ocean grid, fully dynamic
 – Land surface
 • Same grid as atmosphere
• 100 years of model time is ~1 Terabyte
• Data distribution common, ESG will help
Climate 2010
5 years from now

- Five or more interactive components
- Still higher resolution, spatially and temporally
 - Atmosphere
 - 30 km grid (4x DC), 60 vertical levels
 - Ocean
 - 10 km grid (1/2 DC), 40 vertical levels
 - Sea ice
 - 10 km grid, or less
 - Land surface model, fully dynamic vegetation
 - Carbon cycle model
 - Atmospheric chemistry
 - Preliminary observational data assimilation
- 100 years of model time is ~100 TB
- Data distribution common, pain free
Climate in 2010

- Several (six, seven?) interactive components
- Yet still higher resolution, spatially and temporally
 - Atmosphere, ocean, sea ice
 - Fully dynamic vegetation
 - Carbon cycle
 - Atmospheric chemistry
 - Biochemistry
 - Full assimilation of observational data
 - Econometric models
 - Population growth and land use change models
 - Solar processes
- 100 years of model time is at least ~1/2 PB
- Widespread data distribution mandatory
Climate in 2010

A graphic illustration
Climate in 2010

And one more…

NCAR MSS December 2012
Climate 2010

Conclusions

- Climate models have evolved steadily, but that evolution will become more rapid in the future
- Generated data volumes have, and will, increase exponentially
- Widespread data distribution is required for analysis, visualization, and assessment

...All of which mean:

- All aspects of network infrastructure **must** keep up if the science is to progress
Climate 2010

The End