The CAM5.1 release and coupled simulations

Cécile Hannay, Rich Neale, Andrew Gettelman, Jennifer Kay, Sungsu Park, Xiaohong Liu, Steve Ghan, Phil Rasch, Jinho Yoon and many others.

Thanks to DOE for providing allocation on the Oak Ridge Leadership Computing Facility (OLCF) (ASCR Leadership Computing Challenge award)

16th CESM Workshop, Breckenridge, 20 - 23 June 2011
The Community Atmospheric Model (CAM)

- Developed at the National Center for Atmospheric Research (NCAR)

<table>
<thead>
<tr>
<th>Model</th>
<th>CAM3</th>
<th>CAM4</th>
<th>CAM5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>June 2004</td>
<td>April 2010</td>
<td>June 2010</td>
</tr>
<tr>
<td>Aerosols</td>
<td>Bulk Aerosol Model</td>
<td>Bulk Aerosol Model BAM</td>
<td>Modal Aerosol Model Ghan et al. (2011)</td>
</tr>
<tr>
<td>Dynamics</td>
<td>Spectral</td>
<td>Finite Volume</td>
<td>Finite Volume</td>
</tr>
</tbody>
</table>

= New parameterization/dynamics
Let us introduce our new addition
CAM5.1 born on June 15, 2011
What’s in CAM5.1?

- **CAM5.1** = CAM5 + several **bug fixes**

- Changes: **small effect** except ...
 - bug fix for **size of snow** particles used in **radiation**
 - snow particles smaller -> more reflective -> large impact

- **SWCF, ANN**
 - Mean = -3.52 W/m²

- **LWCF, ANN**
 - Mean = 2.30 W/m²

- Change required **retuning**
Model versions and simulations

Models versions

• CCSM4: CAM4 – 1deg (released in April 2010)
• CESM1: CAM5.1 – 1deg (released in June 2011)

Simulations

• 1850 control
• 20th century
• Climate sensitivity
• Aerosol direct/indirect effect
Model versions and simulations

Models versions

• CCSM4: CAM4 – 1deg => “CAM4”
• CESM1: CAM5.1 – 1deg => “CAM5.1”

Simulations

• 1850 control
• 20th century => “Late 20th century” is a climo over 1981-2000
• Climate sensitivity
• Aerosol direct/indirect effect
1850 controls: SSTs versus Hurrell dataset

- **Temperature errors:** Model versus Hurrell (2008)
- RMSE reduced in CAM5.1
- Error in key regions (i.e. Eastern ocean)
Californian stratocumulus

Shortwave cloud forcing (W/m²)

Obs (CERES-EBAF)

CAM4

CAM5.1

Strong cooling effect on the ocean

Not enough cooling and cloud too close to the coast

Major improvement due to new PBL scheme in CAM5

=> better SSTs
20th century: Surface temperature

Global temperature anomalies from 1850-1899 average

- HADCRU
- CAM4
- CAM5.1
Warming over the 20th century

- Warming over 20th century: \(T_S(\text{present}) - T_S(\text{preindustrial}) \)
- Polar amplification
- Significant regional modulation of the global warming trend

Hurrell SSTs dataset

CAM4
Mean = 0.84

CAM5.1
Mean = 0.35
Warming over the 20th century

- Modulation of the warming is correlated to the change in aerosol over the 20th century
- Aerosol: **Cooling effect** on climate
- **CAM5**: aerosol indirect effect

Aerosol Optical Depth (model)

CAM4
Mean = 0.84

CAM5.1
Mean = 0.35
Late 20^{th} century: precipitation versus CMAP

- Precipitation errors: Model versus CMAP (Xie-Arkin)
- Local improvements but globally, no significant improvement with CAM5 (twin ITCZ still present)

CAM4

- Mean = 0.27
- RMSE = 1.09

CAM5.1

- Mean = 0.34
- RMSE = 1.06
Late 20th century: Sea-Level Pressure versus NCEP

CAM5.1 includes the Turbulent Mountain Stress (TMS) parameterization (~ take into account mountain roughness)

TMS improves the sea-level pressure
Late 20th century: Taylor diagrams

CAM3.5
Bias = 1.0
RMSE = 1.0

CAM4
Bias = 0.91
RMSE = 0.91

CAM5.1
Bias = 1.29
RMSE = 0.79
Pacific Variability: ENSO

Neale et al. (2008); Deser et al. (2011); Gent et al. (2011)
Nino3.4 over 20th century

• CAM5.1 better than CAM4

But this result depends on ensemble member !!!
Let’s take another member

• CAM4 better than CAM5.1

But this result depends on ensemble member !!!
Climate sensitivity

• Equilibrium change in **surface temperature** due to a doubling of CO2 (from SOM simulations)

 - CAM4 = 3.17 K
 - CAM5.1 = 4.08 K

• Gettelman et al. (2011) show that:
 - Larger sensitivity in CAM5 is due: higher CO2 radiative forcing
 - larger shortwave cloud feedbacks

 Largest change due to shallow convection scheme:
 enhances positive cloud feedbacks in sub-tropics and mid-latitudes

Adjusted shortwave cloud feedbacks
Aerosol Direct Effect (ADE)
Aerosols scatter and absorb solar and infrared radiation

Aerosol Indirect Effect (AIE)
If aerosols increase
=> number of cloud droplets increases
=> droplet size decreases
=> for same LWP, clouds are brighter
Aerosol: direct and indirect effect

✧ **PNNL**: More accurate way of partitioning the aerosol radiative forcing.

Aerosol Direct Effect (ADE)
Aerosols **scatter** and **absorb** solar and infrared radiation
✧ *New way to compute ADE: include influence of clouds on ADE.*
Ex: Clouds can enhance warming by providing upwelling radiation that can be absorbed.

Aerosol Indirect Effect (AIE)
If aerosols **increase**
⇒ number of cloud droplets increases
⇒ droplet size decreases
⇒ for same LWP, **clouds are brighter**
✧ *New way to compute AIE as a residual*
Aerosol direct effect

Cooling: Sulfate aerosol accumulate over dark surface (Ex: Mediterranean)

Warming: black carbon accumulate over bright surface (Ex: Biomass burning in Africa)

Direct forcing: 0.01 W/m²

Small forcing because enhanced black carbon warming
Aerosol indirect effect

Solar AIE: -1.96 W/m²
- Strong indirect effect over South East Asia, Arctic, off the coast of Chili and North Pacific

Longwave AIE: 0.58 W/m²
- Effect stronger than other models
- Strongly correlated with changes in upper troposphere crystal number concentration
Summary

- Latest CESM simulations include: CAM5.1 at 1-degree resolution using CLM-CN (prognostic carbon and nitrogen cycle in the land).

- Overall, CAM5.1 produces better simulation than CAM4: More realistic surface temperatures, better scores (Taylor diagrams). But some biases remain (precipitation, double ITCZ).

- Climate variability: CAM4 and CAM5.1 reproduced nino3.4 reasonably well. ENSO strongly depends on ensemble member.

- Climate sensitivity is larger in CAM5 (~4K) than in CAM4 (~3.2K). Due to larger shortwave cloud feedbacks and higher CO2 radiative forcing. Changes dominated by shallow convection parameterization.

- We use a new method to assess aerosol direct and indirect effect. ADE: -0.011 W/m² (includes influence of cloud on aerosols). AIE: -1.96 W/m² (shortwave) and +0.58 W/m² (longwave).
Extra slides
Late 20th century: surface wind stress vs ERS

- Temperature errors: Model versus ERS

CAM4 – 1deg
Mean = 0.

CAM5.1 – 1deg
Mean = 0.
Stratocumulus

• Thin clouds that forms over cold oceans (Think “San Francisco”)

• Very reflective => strong cooling effect on the surface

• Very difficult to parameterize (very thin and maintained by a blend of complex processes)

Daily cycle of shortwave heating

entrainment at cloud top

Possible decoupling
drizzle
turbulence

Strong longwave cooling at cloud top

A few hundreds meters

CAM5 represents stratocumulus better
Sea-ice thickness: Loss over 20th century

CAM4-1deg CAM5-2deg CAM5.1-1deg

1850

Late 20th century
Late 20th century: 2-meter Temperature

- Temperature errors: Model versus CRU
 - CAM4: warming too much at mid-latitudes (no indirect effect)
 - CAM5.1: not enough polar amplification

CAM4 – 1deg
Mean = 0.02
RMSE = 2.13

CAM5 – 2deg
Mean = -0.29
RMSE = 2.36

CAM5.1 – 1deg
Mean = -0.81
RMSE = 2.05