On the Potential Vorticity Dynamics of Eighteen Degree Water

Bruno Deremble
Florida State University

CLIMATE IMPLICATIONS OF FRONTAL SCALE AIR-SEA INTERACTION
(Boulder, CO, USA, August 5-7, 2013)
Subtropical mode water and SST fronts

- A thick density layer found equatorward of each WBC
- In the Atlantic Ocean $T \approx 18^\circ$
- relation to an SST front?

Hanawa and Talley, 2001
Potential Vorticity (PV) formalism

In our case, PV is a measure of the vertical thickness of an isopycnal layer (the more PV, the thinner is the layer).

Thomas (2005)
Potential Vorticity (PV) formalism

- In our case, PV is a measure of the vertical thickness of an isopycnal layer (the more PV, the thinner is the layer)

- PV can’t cross isopycnals

Thomas (2005)
Potential Vorticity (PV) formalism

- In our case, PV is a measure of the vertical thickness of an isopycnal layer (the more PV, the thinner is the layer).
- PV can’t cross isopycnals.
- PV extraction occurs at the outcrop/incrop and is measured by the vector J.

Thomas (2005)
Potential Vorticity (PV) formalism

- In our case, PV is a measure of the vertical thickness of an isopycnal layer (the more PV, the thinner is the layer).
- PV can't cross isopycnals.
- PV extraction occurs at the outcrop/incrop and is measured by the vector \(J \).

Thomas (2005)
Potential Vorticity (PV) formalism

In our case, PV is a measure of the vertical thickness of an isopycnal layer (the more PV, the thinner is the layer).

- PV can’t cross isopycnals
- PV extraction occurs at the outcrop/incrop and is measured by the vector J

Thomas (2005)
Potential Vorticity (PV) formalism

Thomas (2005)

- In our case, PV is a measure of the vertical thickness of an isopycnal layer (the more PV, the thinner is the layer).
- PV can't cross isopycnals.
- PV extraction occurs at the outcrop/incrop and is measured by the vector J.
We use an ocean model (NEMO in NATL12 configuration) and make use of the PV formalism to understand the mode water dynamics.
PV view of EDW
PV exchange at the surface — scaling laws

The PV loss (gain) at the surface is measured by the vertical component of the \mathbf{J} vector. What is the leading mechanism for PV extraction in the Gulf Stream region?

\[J_z = \rho Q_w + \omega_z \frac{D\sigma}{Dt} + (\mathbf{F} \times \nabla\sigma)_z \]

(1)

\[\mathbf{J} = 0 \]
PV exchange at the surface — scaling laws

The PV loss (gain) at the surface is measured by the vertical component of the \(\mathbf{J} \) vector. What is the leading mechanism for PV extraction in the Gulf Stream region?

\[
J_z = \rho Q_w + \omega_z \frac{D\sigma}{Dt} + (\mathbf{F} \times \nabla \sigma)_z = 0
\]

\[
J^B_z \sim -\frac{f \alpha Q_{net}}{h C_p}
\]
PV exchange at the surface — scaling laws

The PV loss (gain) at the surface is measured by the vertical component of the \(\vec{J} \) vector. What is the leading mechanism for PV extraction in the Gulf Stream region?

\[
\begin{align*}
J_z &= \rho Q_w + \omega_z \frac{D\sigma}{Dt} + (\vec{F} \times \nabla \sigma)_z \\
J_B^z &\sim - f \alpha Q_{net} h c_p \\
J_F^z &\sim \frac{\tau \times \nabla \sigma}{\rho \delta_e}
\end{align*}
\]
PV exchange at the surface — scaling laws

The PV loss (gain) at the surface is measured by the vertical component of the J vector. What is the leading mechanism for PV extraction in the Gulf Stream region?

\[J_z = \rho Q_w + \omega_z \frac{D\sigma}{Dt} + (F \times \nabla \sigma)_z \]

- $J_z = 0$
- $J_z^{B} \approx -\frac{f\alpha Q_{\text{net}}}{hc_p}$
- $J_z^{F} \approx \frac{\tau \times \nabla \sigma}{\rho \delta_e}$

Using the exact formulation, we end up with a PV extraction of 0.008 pvf ($\approx 1\%$ of the pv content)

= nothing!
Estimate of the interior flux using the Bernoulli function

Figure: Bernoulli function in the mode water area. max 1.3, min 0.3

→ Max PV extraction: $\Delta B \times \Delta \rho \times \Delta T = 1 \times 0.2 \times 0.25 = 0.05 \text{ pvf}$

in good agreement with the surface flux.
Numerical validation

- Mean PV in the control volume: 1.03 pvuye
- Variability: 0.01 pvuye
- Very stable

Figure: 10 years time series of the PV enclosed in the contour and in 26.15 – 26.35
Why so little variation?

- $Q \simeq (f + \nabla \times u) \frac{d\rho}{dz}$
- within a layer, the integrated pv is
 $$Q_i = \iiint (f + \nabla \times u) \frac{d\rho}{dz} dz dx dy$$
 $$Q_i = (f + \nabla \times u) \Delta \rho S$$
- the thickness does not matter

The variations on the previous curve are almost only due to the relative vorticity content.
Walin (1982) Formalism
Walin (1982) Formalism

\[Q_{\text{net}} \]

\[T_1 \quad T_2 \]

The water mass formation is given by the heat flux divergence.

The mode water is a consequence of this principle.
Walin (1982) Formalism

Mass and temperature (or density) budgets combined

\[M \approx -\partial F/\partial \rho, \quad F \approx Q_{\text{net}} \]

The Water mass formation is given by the heat flux divergence.

The mode water is a consequence of this principle.
Walnin (1982) Formalism

- Mass and temperature (or density) budgets combined
- \(M \simeq -\frac{\partial F}{\partial \rho} \), with \(F \simeq Q_{\text{net}} \)

The Water mass formation is \(\sim \) given by the heat flux divergence

The mode water is a consequence of this principle.
Validation of Walin

dashed: \(\oint z_\rho u \), red: \(\int\int F \)
Mean \(\sim 2.5 \) Sv: 25% of the total volume renewed every year.
Walin reproduces the main variations
Conclusions

- Mode water is essentially the result of water mass formation via air–sea heat flux (linked to SST fronts).
- The global PV budget is negligible.

Mean eddy decomposition → \(z_\rho q u = \hat{q} z_\rho u + z_\rho u'' q'' \)

→ explicit role of the mean flow/eddies; link with the volume budget

See also

- Deremblé and Dewar (2013) *Volume and Potential Vorticity Budgets of Eighteen Degree Water*, jpo, accepted
- Deremblé and Dewar (2012) *First order scaling law for potential vorticity extraction due to wind*, jpo
Mean map

Figure: arrows 'normalized'
Figure: arrows 'normalized' — 'almost' downgradient field
Mean – Eddies decomposition

Classical decomposition:

\[\bar{u} = \frac{1}{t_1 - t_0} \int_{t_0}^{t_1} u dt \] \hspace{1cm} (2)

\[u = \bar{u} + u' \]

Thickness averaging decomposition

\[\hat{u} = \frac{\bar{z}_\rho u}{z_\rho} \] \hspace{1cm} (3)

\[u = \hat{u} + u' \]

\[z_\rho q u = \hat{q} z_\rho u + z_\rho u'' q'' \]
Potential Vorticity dynamics

\[\frac{\partial}{\partial t} \rho Q + \nabla \cdot \mathbf{J} = 0. \]

\(\mathbf{J} \) is the sum of an advective and a non advective term:

\[\mathbf{J} = \rho \mathbf{Q} \mathbf{u} + \mathbf{\omega} \frac{D \sigma}{Dt} + \mathbf{F} \times \nabla \sigma \]

PV budget for the mode water. We end up with

\[\oint \mathbf{J} d\mathbf{l}^\perp + \int \int J_z = 0 \]

No diapycnal flux (impermeability theorem).

\[\oint \mathbf{J} d\mathbf{l}^\perp = \hat{q} \oint \mathbf{u} z \rho d\mathbf{l}^\perp + \oint z \rho u'' q'' d\mathbf{l}^\perp + \oint \mathbf{N} d\mathbf{l}^\perp \]

→ explicit role of the mean flow/eddies; link with the volume budget
Eddies and Mean flow

Mean:

$$\hat{q} \oint u z \rho d l \perp$$ \hspace{1cm} (8)

We already know $\oint u z \rho d l \perp$ from the volume budget. and \hat{q} is constant (contour line).

→ PV extraction by mean flow: 0.25 pvu/ye

Eddies

$$\oint z \rho u'' q'' d l \perp$$ \hspace{1cm} (9)

→ PV input by eddies flow: 0.28 pvu/ye
Evaluation in the model

Figure: 10 years time series of the volume of water enclosed in the contour and in 26.15 – 26.35

- Mean volume of mode water: 11.5 Svye
- Variability: 1.5 Svye

On the Potential Vorticity Dynamics of Eighteen Degree Water