Implementation Techniques for Numerical Methods in Atmospheric Models

Robert Klöfkorn1, Ben Jamroz2

1Institute for Mathematics Applied to Geosciences
2Technology Development Division

Computational Information Systems Laboratory
April 8, 2014
Asynchronous communication with MPI in HOMME (CAM-SE)

Pack and Send

```plaintext
MPI_Waitall( \( L^s_p \) ) ; wait for previously posted Isend
for \( q \in L^s_p \) do
  for \( e \in E_q \) do
    packData( e, q ) ;
  end
  MPI_Isend( q ) ;
end
```

Pack data to MPI message buffer

Send data in message buffer to rank \(q \)

Computation

Might require algorithm restructuring

Receive and Unpack

```plaintext
n_r ← 0
while \( n_r < |L^r_p| \) do
  ; check if msg is available, if yes then \( q \) contains the corresponding rank
  if MPI_Testany( \( L^r_p, q \) ) then
    for \( e \in E_q \) do
      unpackData( e, q ) ; unpack data from MPI msg buffer
    end
    reset MPI_Request for \( q \) to MPI_REQUEST_NULL  \( n_r ← n_r + 1 \) ; increase received counter
  end
end
```
Jablonowski-Williamson test case: surface pressure

(a) SE (day 7)
(b) DG (day 7)
(c) SE (day 9)
(d) DG (day 9)
SE strong scaling \(n_e = 120, \ n_p = 4 \)

![Graph](image)
DG strong scaling $n_e = 120, np = 6$