An analytical solution for gravity and sound wave expansion of the linearized compressible, non-hydrostatic Euler equations on the sphere.

M. Baldauf, D. Reinert, G. Zängl
Deutscher Wetterdienst

An analytical solution for the expansion of gravity and sound waves for the linearised form of the fully compressible, non-hydrostatic, shallow atmosphere Euler equations on the sphere is derived. The waves are generated by a weak initial temperature and density perturbation of an isothermal atmosphere, which is a slightly modified initial perturbation compared to Skamarock, Klemp (1994). The derived analytical solution can be used as a benchmark to assess dynamical cores of global numerical models which are based on the above mentioned (in general non-linear) equation system. Three different test configurations with or without Coriolis force (in a 'spherical f-plane-approximation') or additional advection are discussed.

Convergence studies for ‘small earth’ simulations of the newly developed global model ICON of the Deutscher Wetterdienst (DWD) and the Max-Planck Institut of Meteorology (MPI) against this solution will be shown.