The Pacific decadal oscillation, revisited

Matthew Newman1,2*, Michael A. Alexander2, Toby R. Ault3, Kim M. Cobb4, Clara Deser5, Emanuele Di Lorenzo4, Nathan J. Mantua6, Arthur J. Miller7, Shoshiro Minobe8, Hisashi Nakamura9, Niklas Schneider10, Daniel J. Vimont11, Adam S. Phillips5, James D. Scott1,2, and Catherine A. Smith1,2

1CIRES, University of Colorado, Boulder, Colorado
2NOAA Earth Systems Research Laboratory, Boulder, Colorado
3Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York
4School of Earth and Atmospheric Sciences, Georgia Tech, Atlanta, Georgia
5Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, Colorado
6NOAA Southwest Fisheries Science Center, Santa Cruz, California
7Scripps Institute of Oceanography, La Jolla, California
8Graduate School of Science, Hokkaido University, Sapporo, Japan
9Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, and Research Institute for Global Change, JAMSTEC, Yokohama, Japan
10Department of Oceanography and International Pacific Research Center, University of Hawai`i at Manoa, Honolulu, Hawaii
11Department Of Atmospheric and Oceanic Sciences, and Nelson Institute Center for Climatic Research, University of Wisconsin-Madison, Madison, Wisconsin

Submitted to \textit{Bull. Amer. Meteor. Soc.}, March 3 2015

*Corresponding author address: Matthew Newman, NOAA/ESRL, 325 Broadway, R/PSD1, Boulder, CO 80305.
E-mail: matt.newman@noaa.gov
Abstract

The Pacific decadal oscillation (PDO) is the target of ongoing research within the meteorological and climate dynamics communities, and is central to the work of many geologists, ecologists, natural resource managers, and social scientists. Research over the last decade has led to an emerging consensus regarding the physical processes that drive the PDO, including both remote tropical forcing and local atmosphere/ocean processes. PDO-related regional impacts should account for the effects of these different processes, which operate on different timescales and only partly represent direct forcing of the atmosphere by the North Pacific Ocean.
Different physical processes combine to drive variability of the PDO, which carries implications for its use in climate impact studies, forecasts, and projections.

Introduction

Since its identification in the late 1990’s as the dominant year-round pattern of North Pacific sea surface temperature (SST) variability, the Pacific decadal oscillation (PDO) has been connected both to other parts of the climate system and to impacts on natural resources and marine and terrestrial ecosystems. Subsequent research, however, has found that the PDO is not a single physical mode of climate variability but instead largely represents the combination of three groups of processes: (1) changes in ocean surface heat fluxes and Ekman (wind-driven) transport related to the Aleutian low, due to both local unpredictable weather “noise” and to remote forcing from interannual to decadal tropical variability (largely El Niño) via the “atmospheric bridge”; (2) ocean memory, or processes determining oceanic thermal inertia including “re-emergence”, that act to integrate this forcing and thus generate added PDO variability on interannual and decadal time scales; and (3) decadal changes in the Kuroshio-Oyashio current system, forced by winds over the North Pacific driving westward propagating oceanic Rossby waves, manifested as SST anomalies along the subarctic front at about 40ºN in the western Pacific ocean. Thus, the PDO represents the effects of different processes operating on different timescales, and its apparent impacts only partly represent direct forcing of the atmosphere by the North Pacific Ocean. This paper synthesizes this current view of the PDO and discusses its implications for climate diagnosis, including PDO climate impacts and predictability (both oceanographic and atmospheric); potential decadal "regime"-like
behavior; PDO simulations in climate models; the interpretation of multicentennial PDO reconstructions; and its impacts on marine ecosystems. We conclude with a few suggested “best practices” for future PDO-based diagnosis and forecasts.

What is the PDO?

The PDO was first introduced by Mantua et al. (1997) as the leading Empirical Orthogonal Function (EOF) of North Pacific (20°-70°N) SST monthly-averaged anomalies, defined as departures from the climatological annual cycle after removing the global mean SSTs. Figure 1a shows the PDO pattern, calculated by regressing SST anomalies on the EOF’s expansion coefficient time series (or Principal Component; PC), obtained from the HadISST dataset (Rayner et al. 2003) for the years 1901-2004. [Unless otherwise noted, this dataset and period are used for all calculations in this paper.] Over this period, the PDO is fairly similar across SST datasets, which all use different methods to “fill in” missing grids, with relatively minor differences both in time series (Fig. 1c) and pattern (Fig. 1d, where each triangle represents the “distance” of the HadISST PDO pattern from the PDO pattern of a different dataset). It is also reasonably robust to sampling; for example, continually repeating the EOF analysis upon randomly chosen (with replacement) 50-year draws from the HadISST dataset yields patterns all very highly correlated with the PDO EOF (the black dots in Fig. 1d represent how the resulting patterns of this “Monte Carlo” test differ from the full dataset PDO). Dataset dependencies are more pronounced early in the observational record and when only a few decades are used to define the climatology and leading EOF (Wen et al. 2014).

Two characteristics of the PDO found by researchers in the 1990’s suggested it might represent a distinct physical “mode” of North Pacific variability. First, even using
monthly anomalies, the PDO time series has a slowly varying component, with episodic changes of sign; hence “decadal oscillation”\(^1\). Second, there were reasons to view the PDO as a potentially independent North Pacific mode, since the PDO and the Tropics appeared only weakly coupled as evidenced by the low *simultaneous* correlation between time series of the PDO and eastern equatorial Pacific SST anomalies. Additionally, some early modeling work (Latif and Barnett 1994; 1996) raised the possibility that the PDO might correspond to a physical mode, oscillating on decadal time scales, of coupled atmosphere-ocean interaction within the North Pacific.

As the leading North Pacific EOF, the PDO is, *by construction*, the pattern whose variation best encapsulates variability of monthly SST anomalies (SSTAs) within the domain where it is defined (that is, the PDO “explains the most variance” in the North Pacific). However, the PDO does not have to be exclusive to the North Pacific, and in fact the observed regression pattern in Fig. 1a shows a strong connection between the North Pacific and the Tropics, except for the eastern equatorial cold tongue between 2\(^\circ\)N-2\(^\circ\)S (Deser et al. 2004). In particular, positive SSTAs in the eastern tropical Pacific accompany negative SSTAs in the central and western North Pacific and positive SSTAs in the eastern North Pacific (Fig. 1a). Also, some PDO details depend upon the domain used for the EOF calculation: as this domain is expanded southward (orange symbols in Fig. 1d), the tropical portion of the pattern becomes relatively more pronounced, even along the equator, with the North Pacific anomaly shifting slightly eastward to become more symmetric with its South Pacific counterpart. The leading SST EOF of the entire Pacific basin resembles a global ENSO-related pattern (e.g., Deser and Blackmon 1995).

\(^1\) Note that in meteorological parlance, “oscillation” was first related to *spatial* sea-saw patterns in the Atlantic and Pacific by Walker and Bliss (1932), which has more recently been occasionally confused with *temporal* oscillations.
Moreover, the PDO bears considerable similarity to patterns of ENSO-like decadal variability (Zhang et al. 1997; Barlow et al. 2001; Deser et al. 2004), including the Interdecadal Pacific Oscillation (IPO; Power et al. 1999; Folland et al. 2002; Parker et al. 2007; Dai 2012), that are constructed by first filtering SSTAs to remove interannual variability. It is not identical, however: the monthly IPO time series (Folland 2008) has a 0.8 correlation with the PDO index, whereas the IPO has a 0.95 correlation with the time series of the leading Pacific basin EOF.

Processes driving the PDO

Statistical modes may represent physical modes, but there need not be a one-to-one correspondence between them. A body of research exists showing how different physical processes, including random atmospheric forcing; teleconnections from the tropical Pacific; and ocean Rossby waves/shocks in the basin-wide ocean gyre circulation, contribute to PDO variability on a variety of time scales and in different parts of the North Pacific Ocean.

FLUCTUATIONS IN THE ALEUTIAN LOW (LARGE-SCALE STOCHASTIC FORCING)

Many aspects of climate can be represented by a slow dynamical system integrating fast forcing approximated as random, or stochastic, noise (Hasselmann 1976). In a simple stochastic model of midlatitude SST variability (Frankignoul and Hasselmann 1977), the ocean at a given location is treated as a motionless (well-) mixed layer in which surface heat fluxes both force and damp SSTAs. The forcing F is represented by fluxes associated with weather variations, which relative to oceanic time scales have
approximately no memory and the same variance at all time scales ("white noise"). The resulting SSTAs are damped by a linear negative air-sea feedback, representing loss (gain) of heat with the atmosphere from anomalously warm (cold) waters. This can be expressed as a first order autoregressive or AR1 model,

\[SST(n) = r SST(n-1) + F, \]

where \(r \) represents the expected fraction of the SSTA retained (i.e., not lost to damping) between times \(n-1 \) and \(n \), determined by the feedback of air-sea heat fluxes and SST and by the thermal inertia of the upper ocean in direct contact with the atmosphere. Then the SSTAs exhibit a “red noise” spectrum whose magnitude increases with the inverse square of frequency, flattening out at periods long compared to the damping time scale.

The simple view of SST variability as a product of noise integration can be applied basin-wide. White noise forcing associated with large-scale weather generates much of the observed SST variability over the entire North Pacific Ocean (Frankignoul and Reynolds 1983), where interannual variability in the surface fluxes and SSTs are closely linked to dominant atmospheric circulation patterns (Cayan 1992; Iwasaka and Wallace 1995). In an atmospheric general circulation model (AGCM) coupled to a mixed layer ocean model with no currents (and hence no ENSO variability or ocean dynamics), the dominant sea level pressure (SLP) pattern is associated with fluctuations in the strength of the Aleutian low pressure system primarily resulting from internal atmospheric dynamics (Pierce 2001; Alexander 2010), including large-scale dominant teleconnection patterns such as the Pacific-North American (PNA) pattern. For periods with a stronger low, enhanced wind speeds and reduced air temperature and humidity along \(\sim 35^\circ \)N cool the underlying ocean via surface sensible and latent heat fluxes, while
northward advection of warm moist air heats the ocean near North America (Fig. 1a); the
opposite flux anomalies occur when the low is weaker than average. The simulated flux-
driven SSTA pattern in the North Pacific closely resembles the observed PDO.
Anomalous Ekman transports tend to amplify the flux-driven pattern (Miller et al.
1994b). These physical processes result in observed correlations between the North
Pacific index (NPI), a measure of the Aleutian low, and SST that are high when the NPI
leads SST (Fig. 2a) but low when SST leads the NPI (Fig. 2b) (Davis 1976; Deser and
Timlin 1998); similar results are obtained using the PNA index (Fig. S3c).

TELECONNECTIONS FROM THE TROPICS

a. Interannual timescales

Noise due to intrinsic mid-latitude atmospheric variability is but one source of the
forcing \(F \) in (1). ENSO SSTAs in the tropical Pacific induce global atmospheric
teleconnections (e.g. see Trenberth et al. 1998; Liu and Alexander 2007) altering near-
surface air temperature, humidity, wind, and clouds far from the equatorial Pacific. The
resulting variations in the surface heat, momentum, and freshwater fluxes cause changes
in SST and ocean currents. Thus, during ENSO events an “atmospheric bridge” extends
from the equatorial Pacific to other ocean basins including the North Pacific (e.g.,
Niño events peak in boreal winter, the Aleutian low deepens and the changes in the
surface heat fluxes, wind driven mixing, and Ekman transport in the upper ocean all act
to create a positive PDO SSTA pattern (Alexander et al. 2002, Alexander and Scott 2008;
see also Strong and Magnusdottir 2009). This relationship, easily seen by correlating a
wintertime ENSO index (here, the time series of the leading tropical SSTA EOF) with
subsequent global springtime SSTAs (Fig. 2c), is quite stable throughout the
observational record, with some amplitude changes but little modification in pattern (see
Fig. S4). A similar signal also exists in the South Pacific (e.g., Shakun and Shaman 2009;
Deser et al. 2004), helping give rise to the more meridionally symmetric IPO pattern. In
general, ENSO leads the PDO throughout the year (Newman et al. 2003), but the bridge
acts differently in summer and fall, when it modifies SSTAs in the west Pacific primarily
through changes in cloudiness (Alexander et al. 2004).

b. Decadal time scales

Zhang et al. (1997) employed several techniques to separate interannual and
"interdecadal" (> 6 yr) ENSO variability. The SSTA pattern based on their low-pass
filtered data, later identified as the IPO (Power et al. 1999; Parker et al. 2007), is similar
to the unfiltered ENSO pattern except it is broader in scale in the eastern equatorial
Pacific and has enhanced extratropical magnitude relative to the Tropics; its North Pacific
component resembles the PDO. Other statistical methods of decomposing the data
indicate that some portion of the decadal variability in the PDO region is associated with
low frequency anomalies in the tropical Pacific (e.g. Nakamura et al., 1997; Mestas
Nuñez and Enfield 1999; Seager et al. 2004; Deser et al. 2004; Vimont 2005; Alexander
et al. 2008a). Based on experiments using an atmospheric GCM coupled to a global
mixed layer ocean model except in the tropical Pacific, where observed SSTs were
specified, Alexander et al. (2002) and Alexander (2010) estimated that ¼ - ½ of the PDO-
related variability was associated with tropical Pacific decadal variability, communicated
to the North Pacific via the atmospheric bridge.
a. Re-emergence

We might expect that, due to the thermal capacity of seawater and typical mixed layer depths, the memory time scale of the ocean is on the order of months. However, due to seasonal variations in the ocean mixed layer depth, the time scale of midlatitude SSTAs in successive cold seasons is generally greater than a year. Figure 2d illustrates this process, showing the correlation of FMA PDO values with central North Pacific ocean temperatures at depth and increasing lag. [Fig. S5 shows results for other regions.]

Persistent temperature anomalies forming at the surface are mixed downwards throughout the deep winter mixed layer. Then, when the mixed layer abruptly shallows in spring, thermal anomalies at depth can remain under the summer seasonal thermocline, insulated from surface fluxes that damp anomalies in the thin mixed layer above. When the mixed layer deepens again in the following fall, the deeper anomalies are mixed back towards the sea surface. This process, first noted by Namias and Born (1970, 1974) and termed the “reemergence mechanism” by Alexander and Deser (1995), occurs over large portions of the North Atlantic and North Pacific Oceans (Alexander et al. 1999; 2001; Bhatt et al. 1998; Timlin et al. 2002; Hanawa and Sugimoto 2004). The PDO SSTA pattern, generated by internal atmospheric dynamics and/or the atmospheric bridge, recurs in consecutive winters via the reemergence mechanism (Alexander et al. 1999, 2001, 2002), while the summertime PDO signal (at the surface, at least; Fig. 2d) does not tend to recur (Nakamura and Yamagata 1999) and is instead largely forced by contemporaneous air-sea fluxes. Thus the reemergence mechanism determines the effective thermal inertia and the value of \(r \) in (1) as corresponding to deep winter mixed
layers (Deser et al. 2003), enhancing PDO variability on interannual to decadal time scales (Newman et al. 2003; Schneider and Cornuelle 2005).

b. Ocean gyre dynamics

Much of the dynamics within the North Pacific Ocean involves two basin-wide circulations of water, a subpolar counterclockwise gyre and subtropical clockwise gyre, separated by a sharp meridional SST gradient called the subarctic frontal zone (SAFZ). In the western Pacific, large SST variations associated with the PDO occur within the SAFZ, specifically in the Kuroshio Extension (KE) and Oyashio frontal zones and the mixed water region in between (Nakamura et al. 1997; Nakamura and Kazmin 2003; Nonaka et al. 2006). While in most of the North Pacific, SST variability is driven primarily by atmospheric forcing (Smirnov et al. 2014), in this region persistent warm (cool) SSTAs in winter tend to enhance (reduce) heat and moisture fluxes into the atmosphere (Tanimoto et al. 2003; Taguchi et al. 2012), a consequence of dynamic adjustment of upper-ocean gyre circulations that contributes to F in (1). The adjustment occurs primarily through westward propagating Rossby waves excited by anomalous wind stress curl (Miller et al. 1998; Deser et al. 1999; Seager et al. 2001; Schneider et al. 2002; Qiu and Chen 2005; Taguchi et al. 2007). These waves, whose sea surface height variations can be measured by satellite (Fig. 2f), take several (3-10) years to cross the basin guided by the KE jet (Sasaki and Schneider 2011, Sasaki et al. 2013), producing primarily decadal variability in F with a red spectra without preferred spectral peaks (Frankignoul et al. 1997). Specifically, SSTAs result (Fig. 2e) from shifts of latitude and intensity of the fronts (Qiu 2003; Nakamura and Kazmin 2003; Taguchi et al. 2007), and modulations of the stability of the KE jet, the recirculation gyre (Qiu 2000, 2002; Qiu and
Chen 2005, 2010; Kelly et al. 2010; Kwon et al. 2010) and thereby eddy-driven heat transports (Sugimoto and Hanawa 2011). The latitude of the shallow Oyashio front, by contrast, may be more sensitive to local wind forcing (Nonaka et al. 2006).

An atmospheric response to PDO SST variations could enhance PDO decadal variance, or lead to a preferred time scale, if the response projects on F in (1) as a positive or delayed negative, respectively, feedback on the PDO. A basic thermodynamic response exists: the temperature difference between atmospheric boundary layer and oceanic mixed layer decreases due to air-sea heat exchange, slowing subsequent heat exchanges that depend upon this difference, producing “reduced thermal damping” (Barsugli and Battisti 1998) with a consequent increase of temperature variability (Blade 1997). Stochastic wind forcing whose spatial scale corresponds to certain ocean advective (transport) scales might also resonantly enhance decadal SST variability without other feedbacks (Saravanan and McWilliams 1998).

The nature of the coupled ocean-atmosphere dynamical response to PDO SSTAs has been less clear. Such dynamical feedbacks were once thought to drive oscillatory behavior in the PDO (Latif and Barnett 1994), but almost all subsequent studies found that the necessary atmospheric response was too weak, or even of the wrong sign, to generate sustained oscillations. On the one hand, recent observational studies (Frankignoul et al. 2011; Taguchi et al. 2012), coupled GCM experiments (Kwon and Deser 2007; Taguchi et al. 2012) and observationally derived heuristic models (Qiu et al. 2007) suggest that the atmospheric response to SSTAs in the KE and Oyashio frontal zones could induce a modest atmospheric response in the anomalous Aleutian low, which may be able to enhance variability at decadal periods. Those SST frontal zones may act to
anchor the Pacific storm track (Nakamura et al. 2004), and its feedback forcing seems
important in maintaining a stationary atmospheric response (Taguchi et al. 2012; Okajima
et al. 2014). On the other hand, AGCM studies have yet to agree on even the sign of the
atmospheric response to warm SSTAs in the frontal zones, with sensitivity to many
factors including the simulated direct response to the low-level heating, downstream eddy
feedbacks of the modulated storm track, and dependencies upon seasonality and base
state (Okajima et al. 2014; see also review by Kushnir et al. 2002). Likewise, wind
forcing of the ocean driven by the atmospheric response to frontal zone SSTAs found by
Kwon and Deser (2007) was of one sign across the Pacific at ~40°N, while Qiu et al.
(2007) found that its counterpart to the KE variability switched signs in the center of the
basin. Also, Frankignoul et al. (2011) and Taguchi et al. (2012) observed an anomalous
surface Aleutian Low in response to KE/Oyashio fronts SSTAs that, however, was
accompanied by different upper-level anomalies. Some recent observational analysis, and
model experiments at finer resolution (typically ~25 km), suggests that a robust
atmospheric response to KOE SSTAs may instead involve significant changes in
poleward heat and moisture transports by individual storms (O’Reilly and Czaja 2015)
that may not be captured by currently typical climate model resolution (Smirnov et al.
2015), so the impact of ocean-atmosphere coupling onto the PDO is still not fully
understood.

c. Summertime air-sea feedbacks

During summer, due to both a shallower seasonal thermocline and weaker
atmospheric variability, the PDO tends to be less persistent and less confined to the
oceanic frontal zones (Nakamura and Kazmin 2003). Instead, SST variability may be
linked to anomalous low-level cloudiness. Over the NE Pacific, for example, where summertime mid-tropospheric subsidence is maintained by the climatological subtropical high (Miyasaka and Nakamura 2005), most of the clouds develop under the capped inversion layer (Klein et al. 1995; Norris 1998; Wood 2012). Decadal enhancement of lower-tropospheric static stability, due both to negative SSTAs and stronger subsidence associated with the intensified subtropical high, acts to increase low-level cloud amount, optical depth and planetary albedo, and vice versa (cf. Clement et al. 2009). The resulting anomalous cloud radiative forcing could enhance the underlying SSTA as positive feedback. Over the NW Pacific, low-level cloudiness is climatologically high in summer, but is less variable than over the NE Pacific (Norris et al. 1998), which is particularly the case over the subpolar oceanic gyre. Still, decadal variability in low-level cloudiness tends to maximize around 35°N to the south of the NP SAFZ.

The PDO as the sum of multiple processes

In this section we employ two approaches, empirical and numerical modeling studies, to explore how PDO processes combine to produce PDO variability.

EMPIRICAL ANALYSIS

Several recent studies extended the simple AR1 model (1) to incorporate additional PDO dynamical processes discussed above. Using annually-averaged (July-June) anomalies, Newman et al. (2003) found that (1) could be improved by including ENSO forcing within F, with the revised empirical AR-1 model now

$$\text{PDO}(n) = r \text{PDO}(n-1) + a \text{ENSO}(n) + \text{noise}.$$ (2)
Note that r, corresponding to a time scale of ~2 years, includes reemergence, amplifying the low-frequency ENSO component of PDO variability (producing a “reddened ENSO”). Schneider and Cornuelle (2005) included shifts in the North Pacific Ocean gyres in F and explicitly represented anomalous Aleutian low forcing, finding that on interannual time scales, random Aleutian Low fluctuations and ENSO teleconnections were about equally important in determining PDO variability with negligible contributions from ocean currents, while on decadal time scales stochastic forcing, ENSO, and changes in the gyre circulations each contributed approximately 1/3 of the PDO variance. The primary implication of these analyses is that, unlike ENSO, the PDO is likely not a single physical mode but rather the sum of several different basin-scale processes (e.g., Schneider and Cornuelle 2005; Newman 2007, 2013; Alexander et al. 2008b).

An interesting feature of these processes is that while their patterns are not identical (for example, compare Figs. 2a and 2c) and their characteristic time scales are quite different, they all project strongly onto the PDO pattern. However, many common analysis techniques, such as the EOF/PC calculation presented earlier, cannot distinguish between spatially similar, or nonorthogonal, patterns with differing evolution. One method that can involves extending the AR1 model from one to many variables, such as SSTAs throughout the tropical and North Pacific oceans. The resulting multivariate AR1 model (Linear Inverse Model (LIM); Penland and Sardeshmukh 1995; Newman 2007; Alexander et al. 2008b) yields patterns, or eigenmodes, that also represent different dynamical processes with different evolution, but potentially similar spatial structure. Each has its own time scale (its own value of r, in analogy with (1)), but not all the
patterns are static (some also evolve with characteristic frequency). Here we extend the
LIM of Newman (2007) to higher spatial and temporal resolution (a full description of
the approach can be found there); as in that study and related analyses (Compo and
Sardeshmukh 2010; Newman 2013), the pattern corresponding to the global mean
temperature time series makes almost no contribution to the PDO.

Ordered by decreasing memory time scale, the three eigenmodes in Fig. 3
represent dynamical processes with maxima in the North, central tropical/northern
subtropical, and eastern tropical Pacific, respectively; similar patterns have been reported
elsewhere (eg, Barlow et al. 2001; Chiang and Vimont 2004; Guan and Nigam 2008;
Compo and Sardeshmukh 2010). Each eigenmode’s contribution to the PDO time series
(also in Fig. 3) when summed yields a reconstructed PDO (Fig. 3g) quite similar to the
full PDO (Fig. 3h), with 0.7 correlation that increases to 0.8 when both are smoothed
with the 6-yr lowpass filter used in Fig. 1c. The residual between the two time series is
mostly noise since its memory time scale is ~5 months.

One oft-noted PDO aspect, both in climate (e.g., Ebbesmeyer et al. 1991; Graham
1994; Mantua et al. 1997; Minobe 1997; Fleming 2009; Minobe 2012) and ecological
(e.g., Yasuda et al. 1997; Hare and Mantua 2000; Chavez et al. 2003; Peterson and
Schwing 2003) studies, is the appearance of “regime shifts” every few decades or so. The
green lines in Figs. 3g-h indicate that such times for the PDO are also captured by the
reconstructed PDO. Such occurrences (if significant; Rudnick and Davis 2003) might
represent sudden nonlinear changes between relatively stable climate states. However,
regime shifts are also well known to exist in aggregations of AR1 processes (Granger
1980; Beran 1994). To the extent that the PDO represents an aggregation of several
basin-scale dynamical processes with differing but substantial projection onto the PDO pattern, each PDO regime could represent different combinations of processes (see also Deser et al. 2004), with regime shifts due to randomly forced variations in the superposition of these processes (Newman 2007).

In other words, PDO climate regime shifts could be an artifact of measuring the multivariate North Pacific Ocean climate system with a single index (e.g., the PDO). This is illustrated by comparing multidecadal global SST change across the 1976/77 regime shift to corresponding change across 1969/70, chosen since the most slowly varying PDO component changed sign then (Fig. 3a). For the 1976/77 regime shift (Fig. 3j), the well-documented warming in the Tropical Indo-Pacific and along the west coast of North America is evident, along with central Northeast Pacific cooling (e.g., Graham 1994; Miller et al. 1994a; Meehl et al. 2009), whereas 1969/70 (Fig. 3i) marked a North Pacific cooling with greater amplitude that, not surprisingly, extended further westward; note also a corresponding signal in the Atlantic. Which year was “the” regime shift in the North Pacific?

PDO REPRESENTATION BY COUPLED CLIMATE MODELS

Perhaps our most comprehensive tool for understanding how processes interact to produce the PDO is the coupled general circulation model (CGCM). Here, we assess CGCM reproduction of the PDO and PDO processes.

Figure 1b exemplifies the range of PDO patterns (defined according to Mantua et al. 1997) across the “historical” CMIP5 models, used in the most recent IPCC assessment to evaluate impacts of observed radiative forcing, in comparison with the observed pattern (Fig. 1a). The complete range of CMIP5 PDO patterns is in Fig. S1, with
associated time series in Fig. S2 (Phillips et al. 2014). Some models faithfully depict the observed spatial pattern ("Model A") while others lack the tropical connection ("Model B"). The Taylor diagram in Fig. 1d quantifies how well each modeled PDO matches observations; the distance of each symbol from the reference (observations) represents the rms error of each model PDO pattern. While in each case, the North Pacific SST pattern resembles observations and is accompanied by a realistic SLP anomaly (see also Sheffield et al. 2013; Yim et al. 2014), virtually none of the simulations are within the range of either dataset or sampling uncertainty. The spatial relationship between North Pacific SST and SLP anomalies reflects observations, with the atmosphere forcing the ocean and not vice versa, although the model PDO response to atmospheric forcing tends to persist longer than observed (Fig. S3c).

Due to the chaotic nature of the climate system, even very small differences in initial conditions cause simulations to diverge from nature. Hence, in the absence of an externally forced signal, we expect CGCMs to represent PDO variability statistics but not the observed PDO time series. Fig. 1c shows that the CMIP5 historical PDO time series (here smoothed with the 6-yr lowpass filter) are, as expected, all quite different; in particular, none reproduce the observed 20th century sequence of PDO "regimes". Additionally, the ensemble mean of all the time series is near-zero. Given that these model runs are forced with the post-1850 history of radiative forcing, Fig. 1c suggests that the externally forced PDO signal is negligible, consistent with the above empirical analysis, and that the PDO represents natural internal variability.

Earlier analysis of CMIP3 models showed that almost all underestimated the ENSO-PDO relationship compared to observations (Newman 2007; Oshima and
To investigate how the representation of tropical-extratropical interaction impacts the PDO in the CMIP5 historical runs, we fit each PDO time series with the AR-1 model

\[\text{PDO}(n) = r \text{PDO}(n-1) + a \text{ENSO}_1(n) + b \text{ENSO}_2(n) + \epsilon(n), \]

(3)

where PDO is the PDO time series, ENSO1 and ENSO2 are the time coefficients of the leading two EOFs of tropical Pacific \((20^\circ\text{S} - 20^\circ\text{N})\) SSTAs, \(\epsilon\) is white noise, and \(n\) is time step. The AR-1 model, estimated for detrended and normalized annual mean time series averaged from July to June, follows the approach introduced in (2) but includes potential diversity in ENSO anomalies (e.g., Capotondi et al. 2015) with ENSO2; note that ENSO1 is essentially the same as the ENSO index used above.

The AR-1 models constructed from observations and the CMIP5 runs have several notable differences. First, tropical forcing of the PDO is dominated by ENSO1 (Fig. 4b) in observations, but not for most CMIP5 runs. Also, the AR-1 model performance \(\rho\), evaluated by correlating each PDO time series with its corresponding AR-1 model estimate, is higher for observations than for most CMIP5 runs (Fig. 4d); this performance is related to the ENSO1 forcing coefficient, with \(\rho\) and \(a\) correlated at 0.7.

On the other hand, forcing by ENSO2 (Fig. 4c) for all the CMIP5 models is generally greater than for observations. These differences in the relative magnitudes of \(a\) and \(b\) indicate that the tropics-to-PDO linkage is different both quantitatively and qualitatively between most CMIP5 models and observations (see also Fig. S3b). Also, note that most CMIP5 models have larger values of \(r\) as well as longer overall autocorrelation times than observed (Fig. S3a), suggesting that mechanisms causing persistence of the PDO such as oceanic vertical mixing, SST reemergence, oceanic Rossby wave propagation, and/or
ocean-to-atmosphere feedback in mid-latitudes play a stronger role in CMIP5 models than in observations (also, there is less noise in the model output than in observations).

Why this is remains to be understood.

Decadal to centennial PDO variability

As with simpler AR1 models, the LIM generates confidence intervals for power spectra. Figure 5 shows that PDO spectra calculated from observations and the CMIP5 simulations (both control and historical) all generally lie within these confidence intervals. So too do the 1000-yr, externally forced “last millennium” CMIP5 simulations that include estimates of explosive volcanism, solar variability, and anthropogenic changes to atmospheric composition and land use since 850, again suggesting that the PDO largely represents internal, unforced variability, even on decadal to centennial (or dec-cen) timescales. However, given that the CMIP5 PDO connections to the Tropics are generally too weak, and that unforced CMIP5 models generally underestimate dec-cen tropical SST variability (Ault et al. 2013; Laepple and Huybers 2014), the agreement between the CMIP5 power spectra and the LIM may be somewhat fortuitous. That is, some of the “reddened ENSO” power in observations is missing in the models, but its loss seems compensated by an overestimate of the persistence of internally-generated North Pacific SSTAs.

Even relative to a univariate AR1 (red noise) process, no statistically significant decadal or multidecadal peaks in these spectra are detectable (Pierce 2001). Rather, PDO spectral power appears to continually increase with decreasing frequency f, raising the possibility that the spectra represent not red noise but rather long-memory, “$1/f$ noise” (Keshner 1982), with potentially pronounced regime behavior (eg, Percival et al. 2001;
Overland et al. 2006; Fleming 2014; see also Fraedrich et al. 2004). However, the LIM spectrum also is not flat over multidecadal time scales. In fact, spectral slopes are a characteristic not only of some nonlinear systems but also aggregation of processes resulting from a multivariate AR1 system driven by noise (Milotti 1995; see also Penland and Sardeshmukh 2012).

Spectra for several reconstructions of the PDO made by combining paleoclimate proxies such as tree rings, corals, and sediments (Table 1), stay below the upper LIM confidence interval for decadal to multidecadal periods. However, poor reproducibility between the various PDO reconstructions (Fig 5d) calls into question their collective fidelity as paleo-PDO indices. Beyond profound differences in the various proxy networks, the reconstructions also reflect differences in how well local climate responds to large-scale atmospheric variability, potential seasonal biases, and geographic domain (e.g., Tingley, 2012; St. George, 2014). As most PDO reconstructions are based on tree ring width timeseries, the statistical removal of growth-related trends in these series (Cook et al., 1995; Jones et al., 2009 and references therein) may deflate centennial-scale variability, causing a loss of spectral power at the lowest frequencies in Fig. 5c.

As the PDO represents not one but many dynamical processes, it poses a unique challenge as a target for proxy-based reconstruction. The 20th century PDO index has contributions from different processes with varying relative amplitudes and phases (cf. Fig. 3). If the relative importance of these contributions varies, then the apparent teleconnection from their sum (the PDO) could be non-stationary even if teleconnections related to the individual PDO processes were fixed. Moreover, we might expect different proxy networks sensitive to different PDO processes (i.e. tropical versus extratropical
sources of PDO variability) to yield different PDO reconstructions through time.

Additionally, some proxies could be strongly correlated with the PDO less because they are directly influenced by it than because they are also “climate integrators” acting to redden their own forcing by ENSO, as the North Pacific Ocean does (Newman et al. 2003; see also Pederson et al., 2011).

Given that coupled ocean-atmosphere dynamics give rise to the PDO, high-resolution SST reconstructions are particularly important inputs to reconstructed fields. Many SST-sensitive coral oxygen isotope records span the tropical Pacific, often extending into the late 19th century, but such records also reflect changes in the oxygen isotopic content of seawater, largely correlated with salinity (Fairbanks et al., 1997; Conroy et al., 2013). As such, SST-only proxies in corals, such as coral Sr/Ca ratios, hold promise in delivering constraints on past SST, as well as past salinity, when combined with coral oxygen isotope records (i.e. Nurhati et al., 2011).

Innovative new approaches aimed at reconstructing different components of the PDO illustrate the benefits of expanding the available network of PDO-related proxies (e.g., McCabe-Glynn et al. 2013; Emile-Geay et al., 2013; D’Arrigo et al. 2014). As it stands, the current disagreement amongst PDO reconstructions is problematic for any assessment of PDO impacts over the last several hundred years (Kipfmueller et al. 2012).

PDO Climate Impacts

In this section, we address both forecasting the PDO, and forecasting with the PDO, focusing on the need to distinguish between PDO-correlated and PDO-predictable climate impacts.
RETR.

RETROSPECTIVE ANALYSIS OF PDO IMPACTS

PDO dependence on other climate processes implies that correlations with the PDO will be related to correlations with other climate indices. For example, Fig. 5 shows the correlation of revised United States climate division (nClimDiv; Vose et al 2014) cold-season precipitation anomalies with the PDO, ENSO, and NPI indices. While there are some interesting differences, these maps are clearly all quite similar, with ENSO having the most pronounced signal. PDO and ENSO correlations with year-round Palmer Drought Severity Index (PDSI) are also similar except perhaps in the Northwest; for cold-season temperatures, while differences between PDO and ENSO correlations are nontrivial, by far the strongest correlations are with the NPI (Fig. S6). A key concern then is to determine additional predictive information from the PDO, and not merely duplicate teleconnections from those processes that simultaneously act to force it.

Many studies that have explored historical PDO relationships with climate, especially hydrological quantities including precipitation, snowpack, streamflow, and drought (eg, Gershunov and Barnett 1998; Hamlet and Lettenmaier 1999; McCabe and Dettinger 1999, 2002; Gutzler et al. 2002; Brown and Comrie 2004; McCabe et al. 2004; Stewart et al. 2005; Hunter et al. 2006; Kurtzman and Scanlon 2007; Yu and Zwiers 2007; Higgins et al. 2007; Hu and Huang 2009; Zhang et al. 2010; Goodrich and Walker 2011; Mehta et al. 2012; Li et al. 2012; McCabe et al. 2012; Cook et al. 2014; Oakley and Redmond 2014; Wang et al. 2014), are often focused on the impact of PDO phase on ENSO teleconnections. However, sorting ENSO responses by PDO phase may have unanticipated pitfalls beyond double counting. On average, well over half of the large-scale extratropical atmospheric seasonal-mean anomaly occurring during an ENSO event...
is a consequence not of ENSO, but rather of ever-present weather and internal slowly-evolving atmospheric anomalies (e.g., blocking). This “ENSO-year/but-non-ENSO-forced” atmospheric anomaly also modifies North Pacific SSTAs through changes in surface fluxes, while simultaneously contributing to the seasonal-mean climate anomaly downstream over North America (Pierce 2002). [Obviously, such anomalies exist in non-ENSO years as well; cf. NPI and PDO temperature correlations in Fig. S6.] Additionally, like snowflakes no two ENSO events are alike; recent research (see review by Capotondi et al. 2015) suggests that “diversity” between ENSO events may also drive different and/or asymmetric teleconnections across the North Pacific into North America (eg., Hoerling et al. 2001; Larkin and Harrison 2005; Wu et al. 2005; Mo 2010; Yu et al 2012). Of course, different teleconnections could drive variations in the atmospheric bridge with consequent PDO variations (eg, An et al. 2007; Yeh et al. 2015), including on decadal time scales (Yeh and Kirtman 2008). ENSO diversity is evident in separate ENSO SST composites based on high/low PDO years (see Fig. S7; also cf. the North Pacific SSTAs for the two ENSO eigenmodes in Figs. 3d and f), suggesting that this stratification may partly capture ENSO diversity impacts on both PDO and ENSO teleconnections, rather than PDO impacts on ENSO teleconnections.

PDO PREDICTION

Interest in PDO prediction is high due to its potential climate impacts, especially related to decadal variation and PDO regime shifts. From the earlier discussion, however, we might expect that predicting regime duration, which may depend upon the current amplitude of different processes with different memory time scales, could be more skillful than predicting regime shifts, which may be largely randomly forced.
Some extended forecast skill resulting from oceanic Rossby wave propagation (Schneider and Miller 2001) may occur for western Pacific SSTAs within the SAFZ. Recent studies established multi-year predictability of the Kuroshio extension speed (Nonaka et al. 2012) and stability (Qiu et al. 2014) that enter the PDO forcing F in equation (1). How much this enhances PDO predictability (cf. Figs. 2e, 2f) remains to be determined, but it may be related to the more slowly evolving “North Pacific” component in Fig. 3.

Given the PDO’s relationship with ENSO, PDO forecast skill strongly depends on ENSO forecast skill, especially for forecast leads of up to 1-2 years (eg, Alexander et al. 2008b; Wen et al. 2012). For longer forecast leads, largely unpredictable ENSO events act mostly as high amplitude noise for decadal forecasts (Newman 2013; Wittenberg et al. 2014). This may help explain why decadal PDO forecast skill in CMIP5 hindcasts is unimpressive (Guemas et al. 2012; Kim et al. 2012; van Oldenborgh et al. 2012; Newman 2013; Meehl and Teng 2014), although model bias also contributes (Guemas et al. 2012; Kim et al. 2014). Similarly, predicting the atmospheric impacts associated with the PDO may largely depend upon tropical forecast skill. In fact, current GCM forecasts initialized with a PDO SSTA alone have little skill (Kumar et al. 2013; Kumar and Wang 2014), although additional skill with higher resolution models remains possible (eg, Jung et al. 2012).

PDO IMPACTS ON MARINE ECOSYSTEMS

As an imprint on SST of multiple processes driving a coherent large-scale low-frequency structure in the ocean, the PDO organizes ocean biological responses across the Pacific basin. Many studies show a correlation between the PDO index and ocean
ecosystem variables, particularly in the context of ecosystem regime shifts (e.g., Anderson and Piatt 1999; Hare and Mantua 2000; Miller and Schneider 2000). However, it may be more important, although difficult, to go beyond these correlations and connect specific ecosystem responses to the relevant PDO physical processes, including the thermal structure of the upper-ocean, thermocline depth, vertical mixing and upwelling, transport by mean currents, and transport by eddies. For example, sub-surface thermocline changes correlated with PDO can affect bottom-dwelling (benthic) fish and invertebrate communities on the shelf and migrating upper-ocean (pelagic) communities of the deep waters differently. The thermocline response may be dominated by Ekman pumping and driven by wind-stress curl rather than direct surface heat-fluxes that drive SST. Copepods, a key type of ocean zooplankton, closely correspond with PDO variations in the northern California Current (Peterson and Keister 2003), with cold water periods (negative PDO) yielding a lipid-rich, sub-arctic (cold-water) zooplankton community associated with high production of West Coast salmon (Peterson and Schwing 2003). The suggested mechanism linking PDO to these zooplankton is change in the transport of subarctic vs. subtropical water masses driven by PDO-related atmospheric forcing (Keister et al. 2011; Bi et al. 2011). Related to this is the Double Integration Hypothesis (Di Lorenzo and Ohman 2013), whereby a particular species of southern California Current zooplankton appears to integrate PDO-related transport, while the transport integrates PDO-related atmospheric forcing. Changes in the strength of the Kuroshio/Oyashio Extension, related to gyre-scale adjustment processes due to PDO-related atmospheric forcing (Miller et al. 2004), control variability in warm and cold water zooplankton (Chiba et al. 2013).
Alternating multi-decadal biomass fluctuations of sardines and anchovies in the Kuroshio/Oyashio Extension, the California Current System, and the Humboldt Current System, have varied in concert with low-frequency variations of the PDO since the early twentieth century (Yasuda et al. 1999; Chavez et al. 2003). These alternating variations may be related to stock-specific optimal thermal windows for larval-stage survival rates (Takasuka et al., 2008), which in turn support strong correlations between recruitment and regional SSTs in PDO-affected regions (Lindegren et al. 2013).

A unique case is the PDO impact on Pacific salmon populations, since salmon spend part of their lives in fresh water and part in the ocean. During salmon fresh water periods, stream flow and stream temperature, which can be influenced by PDO-related atmospheric forcing patterns (Mantua et al. 1997), may influence juvenile salmon growth and survival rates, and spawning success for adults (Schindler and Rogers 2009). At sea, the oceanic response to PDO forcing may alter food availability and predation through various physical processes related to upwelling, ocean stratification, coastal current flows, and upper-ocean temperatures (Gargett 1997). Since the PDO forcing functions extend from Alaska to California and across the Pacific to East Asia, the imprint of the PDO forcing functions on land and at sea can organize the salmon populations in widely different ways, producing synchrony or asynchrony across basin-scales (e.g., Beamish and Bouillon 1993; Francis and Hare 1994; Mantua et al. 1997; Hare et al. 1999, Stachura et al. 2013).

Some ecosystems may exhibit a response to PDO physical processes that have greater predictability than the PDO index itself, such as in the Kuroshio Extension region where the regional ecosystem (Chiba et al. 2013) is sensitive to SST, vertical nutrient
fluxes, and horizontal transport. Another possibility is the influence of PDO forcing functions causing changes in ocean eddy statistics that are correlated to PDO. These eddy changes can either persist or propagate into different biogeographic regions over many months. In simulations of the California Current System, large-scale winds correlated with the Aleutian Low have been found to cause changes in eddy variance that could influence vertical mixing, lateral mixing, or retention over the shelf (Di Lorenzo et al. 2013). Also, even if PDO climate regime “shifts” are due to random superpositions of PDO processes, ecological regimes may still occur for those biological systems with a nonlinear sensitivity to climate (eg, Steele 2004; Hsieh et al. 2005; Overland et al. 2010). Additional research is required to sort out all the possible ways that PDO-correlated physical forcing can impact biology.

Conclusion

The PDO is now a well-established climate index, frequently used in correlation analyses to suggest physical linkage between a particular variable of interest (e.g., phytoplankton, grain production, rainfall, extreme wind events, etc.) and North Pacific ocean variability. As summarized in Fig. 7, the PDO represents not a single phenomenon but rather a combination of processes that span the Tropics and extratropics. It is therefore important to distinguish climate impacts correlated with the PDO from climate impacts that are predictable by the PDO. In this context, since much of the PDO represents the oceanic response to atmospheric forcing, care should be taken when using the PDO as a "forcing" function of non-oceanic responses without a convincing argument for the physical forcing mechanism. For example, claiming that PDO "drives" contemporaneous changes in rainfall over western North America (e.g., Gershunov and
Barnett 1998) is more simply explained by both variables (PDO and rainfall) being driven by a common forcing function (Pierce, 2002) such as ENSO and internal variability of the mid-latitude atmosphere. A "common forcing function" must therefore be considered as the first approximation for explaining a discovered simultaneous correlation between non-oceanic variables and PDO. Caution is also needed when using the PDO together with other indices in analyses where the PDO depends upon those indices; determining which portion of the PDO, and/or which PDO process, is legitimately an “independent” predictor is an important first step.

Ultimately, numerical integration may offer the best hope for establishing links with the PDO, because the historical record of PDO has too few degrees of freedom to ascribe significance to a lagged relation, a consequence of PDO representing an "integrated in time" (low-pass filtered) response to atmospheric forcing. Of course, the issues presented above still need consideration when analyzing model output (e.g., Polade et al. 2013). Moreover, a realistic balance of PDO processes must be simulated in CGCMs. Models with particularly weak tropical-PDO connections may be ill-suited for examination of the importance of tropical forcing to the North Pacific (e.g., Giannakis and Majda 2012). In fact, (3) may be one good approach for process-based analysis of CMIP CGCMs, since it tests not only how well ENSO variability is captured but also how ENSO teleconnections and North Pacific memory and dynamical processes are simulated.
REFERENCES

Alexander, M. A., N.-C. Lau, and J. D. Scott, 2004: Broadening the atmospheric bridge paradigm: ENSO teleconnections to the North Pacific in summer and to the tropical west Pacific-Indian oceans over the seasonal cycle. In *Earth’s Climate: The Ocean*
Atmosphere Interaction, edited by Geophys. Monogr. Ser., vol. 147, edited by C. Wang,
Alexander, M. A., L. Matrosova, C. Penland, J. D. Scott, and P. Chang, 2008b:
Forecasting Pacific SSTs: Linear Inverse Model Predictions of the PDO. J. Climate, 21, 385-402.
Alexander, M., and J. D. Scott, 2008: The Role of Ekman Ocean Heat Transport in the
Alexander, M. A., M. S. Timlin, and J. D. Scott, 2001: Winter-to- winter recurrence of
Anderson, P.J., and J.F. Piatt, 1999: Community reorganization in the Gulf of Alaska
Ault, T., C. Deser, M. Newman, and J. Emile-Geay, 2013: Characterizing decadal to
centennial variability in the equatorial Pacific during the last millennium. Geophys. Res.
Barlow, M., S. Nigam, and E. H. Berbery, 2001: ENSO, Pacific Decadal Variability, and
Barsugli, J. J. and D. S. Battisti, 1998: The basic effects of atmosphere-ocean thermal

influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific

Fraedrich, K., U. Luksch, and R. Blender, 2004: 1/f model for long-time memory of the

Francis, R.C., and S.R. Hare, 1994: Decadal-scale regime shifts in the large marine
ecosystems of the north-east Pacific: a case for historical science. *Fisheries
Oceanography* 3, 279–291.

Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part II:
Application to sea-surface temperature anomalies and thermocline variability. *Tellus*, 29,
284–305.

Frankignoul, C., and R. W. Reynolds, 1983: Testing a dynamical model for mid-latitude

Frankignoul, C., N. Senechael, Y. Kwon, and M. Alexander, 2011: Influence of the
meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric

Furtado, J. C., E. Di Lorenzo, N. Schneider, and N. A. Bond, 2011: North Pacific
Decadal Variability and Climate Change in the IPCC AR4 Models. *J. Climate*, 24, 3049–

Gargett, A. E., 1997: The optimal stability “window”: a mechanism underlying

Kim, H. M., Y. G. Ham, and A. A. Scaife, 2014: Improvement of initialized decadal predictions over the North Pacific Ocean by systematic anomaly pattern correction. *J. Climate*, 27 (13), 5148-5162.

McCabe, G. J., and M. D. Dettinger, 2002: Primary Modes and Predictability of Year-to-Year Snowpack Variations in the Western United States from Teleconnections with Pacific Ocean Climate. J. Hydrometeor, 3, 13–25.

McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean

Peterson, W.T., and J.E. Keister, 2003: Interannual variability in copepod community
composition at a coastal station in the northern California Current: a multivariate
approach. *Deep-Sea Research Part II: Topical Studies In Oceanography*, **50**(14-16),
2499-2517.

Peterson, W.T., and F. B. Schwing, 2003: A new climate regime in northeast Pacific

Pierce, D. W., 2001: Distinguishing coupled ocean–atmosphere interactions from
background noise in the North Pacific. *Progress in Oceanography*, **49**, 331–352,

Pierce, D. W., 2002: The Role of Sea Surface Temperatures in Interactions between

Polade, S. D., A. Gershunov, D. R. Cayan, M. D. Dettinger, and D. W. Pierce, 2013:
Natural climate variability and teleconnections to precipitation over the Pacific-North

Power, S., M. Haylock, R. Colman, and X. Wang, The Predictability of Interdecadal
Changes in ENSO Activity and ENSO Teleconnections. *journals.ametsoc.org*.

Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal
modulation of the impact of ENSO on Australia. *Clim Dyn*, **15**, 319–324,

Table 1. Paleo reconstructions of the PDO used in Fig.5. Paleoclimate reconstructions were all obtained from the NOAA Paleoclimatology program and are publicly available. Each PDO reconstruction targets slightly different aspects of the PDO, and each follows its own conventions for normalization, so all indices are normalized to unit variance over the period 1901-2000.

<table>
<thead>
<tr>
<th>Reconstruction</th>
<th>Time period</th>
<th>Proxies used</th>
<th>Season Targeted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biondi et al. 2001</td>
<td>1661-1991</td>
<td>Tree-ring</td>
<td>ONDJFM*</td>
</tr>
<tr>
<td>D’Arrigo and Wilson 2006</td>
<td>1565-1988</td>
<td>Tree-Ring</td>
<td>MAM</td>
</tr>
<tr>
<td>MacDonald 2005</td>
<td>993-1996</td>
<td>Tree-Ring</td>
<td>Annual (Jan-Dec)</td>
</tr>
<tr>
<td>D’Arrigo et al. 2001</td>
<td>1700-1979</td>
<td>Tree-Ring</td>
<td>NDJFM*</td>
</tr>
<tr>
<td>Felis et al. 2010</td>
<td>1873-1994</td>
<td>Coral (Porites)</td>
<td>NDJF</td>
</tr>
<tr>
<td>Shen et al. 2006</td>
<td>1470-1998</td>
<td>Historical Docs</td>
<td>Annual</td>
</tr>
</tbody>
</table>
Figure 1. The Pacific decadal oscillation (PDO), in observations and CMIP5 models, over the historical record (1901-2004). (a) Regression of global monthly SST (shading) and DJF SLP (contours; interval is 1 hPa) anomalies onto the PDO time series (from the HadISST dataset). (b) Same as (a) except showing two selected members of the “historical” CMIP5 ensemble. (c) PDO time series determined from the HadISST and ERSST v3b datasets, and from the historical CMIP5 ensemble. For the top two panels, the thick black line shows the smoothed (6-yr lowpass; Zhang et al. 1997) time series. For the last panel, all time series are smoothed; thin gray lines represent each ensemble member, the thin black solid (dashed) line represents model A (B), and the thick black line is the ensemble mean. (d) Taylor diagram (Taylor et al. 2001) comparing the reference PDO (HadISST) pattern (black circle) with variations due to sampling, observational dataset, and geographical domain; the distance of each symbol from the black circle (the reference PDO in Fig. 1a) represents normalized root-mean-square error, indicated by the dashed semicircles spaced at an interval of 0.5. See supplementary material for additional detail. Black dots: PDO estimates based on the 50yr Monte Carlo subsamples; triangles: PDO determined from the ERSSTv3b (blue), COBE (green), and Kaplan (yellow) observed data sets; orange symbols: SSTA structure (within the North Pacific PDO region) associated with the leading SSTA EOF, where the southern border of the Pacific domain is instead 0º (square), 20ºS (triangle), and 70ºS (circle). Also shown are the CMIP3 (cyan squares) and CMIP5 (red circles) historical simulation PDOs.
Figure 2. Illustration of “processes” that drive variability of the PDO: local and remote atmospheric forcing (a-c), re-emergence of oceanic thermal anomalies (d), and slow ocean (Rossby wave) dynamics (e-f). (a) One-season lead correlation between DJF NPI and global SSTAs during MMA, 1901-2004. (b) One-season lag correlation between MMA NPI and global SSTAs during DJF, 1901-2004. (c) One-season lag correlation between the DJF value of the “ENSO index” (the leading PC of tropical Pacific SSTAs) and global SSTAs during MMA, 1901-2004. In this and subsequent figures, the NPI index sign has been flipped so that “positive” refers to a deepening of the Aleutian low. (d) Correlation of the JFM value of the PDO time series (as in Fig. 1c except determined from 3-month running means) with SODA ocean temperatures (Carton and Giese 2008) area averaged in the Gulf of Alaska, for the years 1958-2004. The gray line shows the climatological mean mixed layer depth as a function of time of year. (e) Time series of the SSTA in the mixed water region (MWR, solid) and the PDO (dashed, with sign inverted). The temperature index is based on the optimal interpolation, blended, quarter degree SST analysis of Reynolds et al. (2007). The MWR extends from the coast of Japan to 150°E, and between 36°N to 42°N. Both the MWR and PDO indices have been normalized by their respective standard deviation. The correlation between MWR and PDO indices is -0.49. (f) Satellite observed sea surface height anomalies in cm, averaged between 33°N and 35°N. The dotted line marks a westward phase speed of 3.7 cm/s (Qiu and Chen 2010). Sea surface temperature and sea surface height anomalies have been detrended and smoothed with a two year running mean, with weights varying linearly as a function of lag.
Figure 3. Reconstructing the PDO as the sum of three different processes. (a-h) Contributions to the PDO from (a) the second (“North Pacific”; Fig. 3b), (c) fourth (“Central Pacific ENSO”; Fig. 3d) and (e) third (“Eastern Pacific ENSO”; Fig. 3f) shows most energetic phase, with least energetic phase not shown) eigenmodes of the LIM described in the paper. Note that unlike EOFs, these eigenmodes are nonorthogonal. (d) “PDO reconstruction”, the sum of the time series shown in panels a, c, and e. (h) PDO time series. In time series panels, heavy black lines represent the application of the same 6-yr lowpass smoother as in Fig. 1c, and green lines indicate times of PDO “regime shifts”. (i and j) Epoch difference maps, showing SST differences of two adjacent 20 year means centered on (i) 1968/69 and (j) 1976/77. The adjacent 20-year periods used for each epoch calculation are indicated by the corresponding color bars in Fig. 3h.
Figure 4. Parameters for an AR-1 model of the PDO time series, $\text{PDO}(n) = r \text{PDO}(n-1) + a \text{ENSO1}(n) + b \text{ENSO2}(n) + \epsilon$, for CMIP5 models (blue bars) and observations (red bars). The AR-1 model is determined from the PDO and two leading tropical PCs, ENSO1 and ENSO2, calculated as discussed earlier but for the period 1900 to 2000, and then averaged from July to June. (a) Lag-1 auto correlation, i.e., r in the above equation. (b) Forcing coefficient for ENSO1, i.e., a in the above equation. (c) Forcing coefficient for ENSO2, i.e., b in the above equation. (d) Correlation ρ between actual PDO time series and estimated PDO timeseries determined from the AR-1 model.
Figure 5. Comparison of observed, paleoclimate, and CMIP5 PDO spectra: (a) CMIP5 “historical” simulations (190 runs total) and forced “last millennium” (past 1000 yrs) simulations (6 runs); (b) unforced “control” simulations (48 runs total); and (c) paleoclimate (tree ring and other proxy-based) reconstructions of the PDO. In each case, only winter (NDJFM) averages are used for consistency between data types. All PDO reconstruction indices were normalized to unit variance over 1901-2000; all other indices were normalized to unit variance overall, not just the reference period. The gray shading and black lines show the upper and lower 95% confidence limits of the PDO power spectrum derived from 140 realizations of a LIM simulation each lasting 1750 years. d) Time series of each PDO reconstruction and the relative similarity of the reconstructions through time. The color lines show the individual reconstructions themselves (left axis), while the gray shading shows the relative similarity (right axis), measured by shared variance of the different indices through time, or the fraction of total variance shared by all reconstructions in the correlation matrix of all time series over a moving 40 year window. The ratio is computed by dividing the leading eigenvalue of the reconstruction correlation matrix by the total number of reconstructions available through time.
Figure 6. NDJFM US precipitation anomalies (from climate division data; Vose et al. 2014) correlated with (a) the PDO index, (b) the ENSO index, and (c) the NPI, for the years 1901-2004.
Figure 7. Summary figure of the basic processes involved in the PDO.