Supplement to: Nonlinear response of extreme precipitation to warming in CESM1

A. G. Pendergrass¹*, D. Colman¹, C. Deser¹, F. Lehner¹, N. Rosenbloom¹, and I.R. Simpson¹

¹National Center for Atmospheric Research, Boulder, CO, USA

*Corresponding author: Angeline G. Pendergrass (apgrass@ucar.edu)
Temperature (K) vs. Time (Year)

- a) CESM1 LE
- b) All but aerosols (fixed at 1920)

∆Rx1day/∆T (%/K) vs. Time (Year)

- c) ΔRx1day/ΔT (%) vs. ΔT (K)
- d) Linear regression slope = 1.1 %K⁻¹

Rx1day (mm/d) vs. Temperature (K)

- e) Quadratic fit

Confidential manuscript in preparation for submission to *Geophysical Research Letters*
Figure S1. Nonlinear response of extreme precipitation to warming in simulation with fixed anthropogenic aerosol forcing. Following Fig. 1 with a 20-member CESM1 ensemble with anthropogenic aerosol forcing fixed at 1920 values.

Figure S2. Change in extreme precipitation for (a) E3SM and (b) CESM2, two descendent models of CESM1. (b) The same analysis on one member of the CESM1-LE shown for comparison. Following Fig. 5, for 1pctCO2 CMIP6 DECK experiments.
Figure S3. Two ways of quantifying the dynamic component: vertical pressure velocity at 500 hPa and horizontal convergence at 850 hPa.

Figure S4. Timeseries of (a) global mean near surface air temperature anomaly and (b) change in maximum day of precipitation averaged globally each year (relative to 1986-2005 mean) for CESM1-LE simulations (black), 15 member ensemble with anthropogenic aerosols fixed at 2005 values (red), and the difference between them (blue).