ARTMIP Publications

Publications generated by the ARTMIP Project:

2021

O’Brien, Travis Allen and Wehner, Michael F and Payne, Ashley E. and Shields, Christine A and Rutz, Jonathan J. and Leung, L. Ruby and Ralph, F. Martin and Marquardt Collow, Allison B. and Guan, Bin and Lora, Juan Manuel and et al., (2021) Increases in Future AR Count and Size: Overview of the ARTMIP Tier 2 CMIP5/6 Experiment, (Submitted to JGR-A), Earth and Space Science Open Archive, 2021, DOI = 10.1002/essoar.10504170.1, https://doi.org/10.1002/essoar.10504170.2

Inda-Díaz, H. A., O'Brien, T. A., Zhou, Y., & Collins, W. D. (2021). Constraining and Characterizing the size of Atmospheric Rivers: A perspective independent from the detection algorithm. Journal of Geophysical Research: Atmospheres, 126, e2020JD033746. https://doi.org/10.1029/2020JD033746.

Zhou, Y., O'Brien, T. A., Ullrich, P. A., Collins, W. D., Patricola, C. M., & Rhoades, A. M. (2021). Uncertainties in atmospheric river lifecycles by detection algorithms: Climatology and variability. Journal of Geophysical Research: Atmospheres, 126, e2020JD033711. https://doi.org/10.1029/2020JD033711.

2020

Lora, J. M., Shields, C. A., & Rutz, J. J., (2020), Consensus and disagreement in atmospheric river detection: ARTMIP global catalogues. Geophysical Research Letters, 47, e2020GL089302,https://doi.org/10.1029/2020GL089302.

Payne, A.E., Demory, M., Leung, L.R., Ramos, A., Shields C.A., Rutz, J. J., Siler, N., Villarini, G., Hall, A., Ralph, F. M., Responses and impacts of atmospheric rivers to climate change. Nat Rev Earth Environ 1, 143–157, https://doi.org/10.1038/s43017-020-0030-5 , 2020.

2019

Chen, X., Leung, L. R., Wigmosta, M., &Richmond, M. (2019). Impact ofatmospheric rivers on surfacehydrological processes in western U.S.watersheds.Journal of GeophysicalResearch: Atmospheres,124. https://doi.org/10.1029/2019JD030468

DOE Report: Report of the 3rd ARTMIP Workshop. 2019. (DOE Meeting Reports)

O’Brien, T. A., and Coauthors, 2020: Detection Uncertainty Matters for Understanding Atmospheric Rivers. Bull. Amer. Meteor. Soc., 101, E790–E796, Bull. Amer. Meteor. Soc. , https://doi.org/10.1175/BAMS-D-19-0348.1

Rutz, J.J, Shields, C.A., Lora, J.M, Payne, A.E., Guan, B., Ullrich, P., O'Brien, T., Leung, L.-Y., Ralph, F.M., Wehner, M., Brands, S., Collow, A., Goldenson, N., Gorodetskaya, I., Griffith, H., Hagos, S., Kashinath, K., Kawzenuk, B., Krishnan, H., Kurlin, V., Lavers, D., Magnusdottir, G., Mahoney, K., McClenny, E., Muszynski, G., Nguyen, P.D., Prabhat, Qian, Y., Ramos, A.M., Sarangi, C., Sellars, S., Shulgina, T., Tome, R., Waliser, D., Walton, D., Wick, G., Wilson, A., Viale, M.: The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying Uncertainties in Atmospheric River Climatology, Journal of Geophysical Research-Atmospheres , https://doi.org/10.1029/2019JD030936, 2019.

Shields, C. A., Rosenbloom, N., Bates,S., Hannay, C., Hu, A., Payne, A. E., Rutz, J. J., Truesdale, J., Meridional heat transport during atmospheric rivers in high‐resolution CESM climate projections. Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL085565., 2019.

Shields, C.A., J.J. Rutz, L.R. Leung, F.M. Ralph, M. Wehner, T. O’Brien, and R. Pierce, 0: Defining Uncertainties Through Comparison of Atmospheric River Tracking Methods. Bull. Amer. Meteor. Soc., 0, https://doi.org/10.1175/BAMS-D-18-0200.1 , 2019.

2018

Chen, X., Leung, L. R., Gao, Y., Liu, Y., Wigmosta, M., & Richmond, M., Predictability of Extreme Precipitation in Western U.S. Watersheds Based on Atmospheric River Occurrence, Intensity, and Duration. Geophysical Research Letters, 45. https://doi.org/10.1029/2018GL079831 , 2018.

DOE Reports: Report of the 2nd ARTMIP Workshop DOE/SE-0194, 2018.

Ralph, F.M., Wilson, A.M., Shulgina, T., Kawzenuk, K., Sellars, S., Rutz, J.J., Lamjiri, M.A., Barnes, E.A., Gershunov,A., Guan, B., Nardi, K., Osborne, T., and Wick, G.A.: ARTMIP-early start comparison of atmospheric river detection tools: How many atmospheric rivers hit northern California's Russian River Watershed? Clim. Dyn. , https://doi.org/10.1007/s00382-018-4427-5., 2018.

Shields, C. A., Rutz, J. J., Leung, L.-Y., Ralph, F. M., Wehner, M., Kawzenuk, B., Lora, J. M., McClenny, E., Osborne, T., Payne, A. E., Ullrich, P., Gershunov, A., Goldenson, N., Guan, B., Qian, Y., Ramos, A. M., Sarangi, C., Sellars, S., Gorodetskaya, I., Kashinath, K., Kurlin, V., Mahoney, K., Muszynski, G., Pierce, R., Subramanian, A. C., Tome, R., Waliser, D., Walton, D., Wick, G., Wilson, A., Lavers, D., Prabhat, Collow, A., Krishnan, H., Magnusdottir, G., and Nguyen, P.: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design, Geosci. Model Dev., 11, 2455-2474, https://doi.org/10.5194/gmd-11-2455-2018, 2018.


ARTMIP data access, citation, and authorship policy [View]



Publications with detection algorithm details:

Brands, S., J.M. Gutiérrez and D. San Martín, 2017: Twentieth-century atmospheric river activity along the west coasts of Europe and North America: algorithm formulation, reanalysis uncertainty and links to atmospheric circulation patterns. Clim. Dyn., 48(9-10), 2771-2795, doi:10.1007/s00382-016-3095-6

Gao, Y., J. Lu, L. R. Leung, Q. Yang, S. Hagos, and Y. Qian, 2015: Dynamical and thermodynamical modulations of future changes in landfalling atmospheric rivers over western North America. Geophys. Res. Lett., 42, 7179-7186, doi:10.1002/2015GL065435.

Gao, Y., J. Lu, and L.R. Leung, 2016: Uncertainties in projecting future changes in atmospheric rivers and their impacts on heavy precipitation over Europe. J. Clim., 29, 6711-6726, doi: 10.1175/JCLI-D-16-0088.1.

Leung, L. R., and Y. Qian, 2009: Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model, Geophys. Res. Lett., 36, L03820, doi:10.1029/2008GL036445.

Gershunov, A., T. Shulgina, F. M. Ralph, D. A. Lavers, and J. J. Rutz, 2017: Assessing the climate-scale variability of atmospheric rivers affecting western North America, Geophys. Res. Lett., 44, 7900–7908, doi:10.1002/2017GL074175.

Goldenson, N., Leung, L.R., Bitz, C.M., Blanchard-Wrigglesworth, E.: Influence of Atmospheric River Events on Mountain Snowpack of the Western U.S., JCLI, doi:10.1175/JCLI-D-18-0268.1.

Gorodetskaya, I. V., M. Tsukernik, K. Claes, M. F. Ralph, W. D. Neff, and N. P. M. Van Lipzig, 2014: The role of atmospheric rivers in anomalous snow accumulation in East Antarctica, Geophys. Res. Lett., 41, 6199–6206, doi:10.1002/2014GL060881.

Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12, 514–535, doi: 10.1002/2015JD024257.

Lavers, D. A., G. Villarini, R. P. Allan, E. F. Wood, and A. J. Wade, 2012: The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation, J. Geophys. Res., 117, D20106, doi:10.1029/2012JD018027.

Lora, J. M., J. L. Mitchell, C. Risi, and A. E. Tripati, 2017: North Pacific atmospheric rivers and their influence on western North America at the Last Glacial Maximum, Geophys. Res. Lett., 44, doi:10.1002/2016GL071541.

Mahoney, K., D.L. Jackson, P. Neiman, M. Hughes, L. Darby, G. Wick, A. White, E. Sukovich, and R. Cifelli, 2016: Understanding the Role of Atmospheric Rivers in Heavy Precipitation in the Southeast United States. Mon. Wea. Rev., 144, 1617–1632, doi: 10.1175/MWR-D-15-0279.1.

McClenny, E. E., Ullrich, P. A., & Grotjahn, R. (2020). Sensitivity of atmospheric river vapor transport and precipitation to uniform sea surface temperature increases. Journal of Geophysical Research: Atmospheres , 125, e2020JD033421. https://doi.org/10.1029/2020JD033421

Mundhenk, B. D., E. A. Barnes, and E. D. Maloney (2016), All-season climatology and variability of atmospheric river frequencies over the North Pacific, J. Climate, 29, 4885 4903, doi:10.1175/JCLI-D-15-0655.1.

Muszynski, G., Kashinath, K., Kurlin, V., & Wehner, M. (2019). Topological data analysis and machine learning for recognizing atmospheric river patterns in large climate datasets. Geoscientific Model Development, 12(2), 613–628, doi.org/10.5194/gmd-12-613-2019

O’Brien, T. A., Risser, M. D., Loring, B., Elbashandy, A. A., Krishnan, H., Johnson, J., Patricola, C. M., O’Brien, J. P., Mahesh, A., Arriaga Ramirez, S., Rhoades, A. M., Charn, A., Inda Díaz, H., & Collins, W. D. (2020). Detection of atmospheric rivers with inline uncertainty quantification: TECA-BARD v1.0.1. Geoscientific Model Development , 13(12), 6131–6148. https://doi.org/10.5194/gmd-13-6131-2020

Pan, M. and Lu, M. (2019), A Novel Atmospheric River Identification Algorithm, Water Resources Research, 2019, 55: 6069-6087, https://doi.org/10.1029/2018WR024407

Pan, M. and Lu, M. (2020),“East Asia Atmospheric River Catalog: Annual Cycle, Transition Mechanism and Precipitation”, Geophysical Research Letters, 47, e2020GL089477. https://doi.org/10.1029/2020GL089477

Payne, A. E., and G. Magnusdottir, 2015: An evaluation of atmospheric rivers over the North Pacific in CMIP5 and their response to warming under RCP 8.5, J. Geophys. Res. Atmos., 120, 11,173–11,190, doi:10.1002/2015JD023586.

Payne, A. E., and G. Magnusdottir, 2016: Persistent landfalling atmospheric rivers over the west coast of North America, J. Geophys. Res. Atmos., 121, 13,287–13,300, doi:10.1002/2016JD025549.

Ramos, A. M., Nieto, R., Tomé, R., Gimeno, L., Trigo, R. M., Liberato, M. L. R., and Lavers, D. A.: 2016, Atmospheric rivers moisture sources from a Lagrangian perspective, Earth Syst. Dynam., 7, 371-384, doi:10.5194/esd-7-371-2016.

Rhoades, A., Jones, A., O'Brien,T.A., O'Brien, J.P., Ullrich, P.A., Zarzycki, C. M.: 2020, Influences of North Pacific Ocean domain extent on the western US winter hydroclimatology in variable-resolution CESM JGR-A. https://doi.org/10.1029/2019JD031977.

Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905–920, doi:10.1175/MWR-D-13-00168.1.

Sellars, S., P. Nguyen, W. Chu, X. Gao, K. Hsu and S. Sorooshian, 2013: Computational Earth Science: Big Data Transformed into Insight, Eos Trans. AGU, 94(32), 277, 10.1002/2013EO320001.

Sellars, S.L., X. Gao, and S. Sorooshian, 2015: An Object-Oriented Approach to Investigate Impacts of Climate Oscillations on Precipitation: A Western United States Case Study. J. Hydrometeor., 16, 830–842, doi:10.1175/JHM-D-14-0101.1.

Shields, C. A., and J. T. Kiehl , 2016: Atmospheric river landfall-latitude changes in future climate simulations, Geophys. Res. Lett., 43, 8775–8782, doi:10.1002/2016GL070470.

Shearer, E. J., Nguyen, P., Sellars, S. L., Analui, B., Kawzenuk, B., Hsu, K., et al. (2020). Examination of global midlatitude atmospheric river lifecycles using an object‐oriented methodology. Journal of Geophysical Research: Atmospheres, 125, e2020JD033425. https://doi.org/10.1029/2020JD033425

Shields, C. A., and J. T. Kiehl, 2016: Simulating the Pineapple Express in the half degree Community Climate System Model, CCSM4, Geophys. Res. Lett., 43, 7767–7773, doi:10.1002/2016GL069476.

Viale, M., R. Valenzuela, R.D. Garreaud, and F.M. Ralph, 2018: Impacts of Atmospheric Rivers on Precipitation in Southern South America. Journal of Hydrometerology,(In review).

Wick, G.A., P. J. Neiman and F. M. Ralph, 2013: Description and Validation of an Automated Objective Technique for Identification and Characterization of the Integrated Water Vapor Signature of Atmospheric Rivers, IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 4, pp. 2166-2176, doi: 10.1109/TGRS.2012.2211024