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@ The Lin and Rood (1996) advection scheme
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‘Definition’ of an atmospheric dynamical core

‘Roughly speaking, the dynamical core solves the governing fluid and ther-
modynamic equations on resolved scales, while the parameterizations rep-
resent sub-grid-scale processes and other processes not included in the dy-
namical core such as radiative transfer.” - Thuburn (2008)

<:( Computer code ﬁ>

Dynamics module Physics module

(mostly resolved scale processes) (sub-grid scale processes not in
dynamics module)

+ Numerical approximation to <>
adiabatic frictionless equations
of motion on resolved scales.

« Moist processes (convection,
cloud microphysics, ...).

- Sub-grid-scale: Scale-selective + Radiation.
dissipation (explicit or inherent). + Boundary layer turbulence.
- Tracer transport on resolved : CE)themlstry.
- Etc.

scales.
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‘Definition’ of an atmospheric dynamical core

Define:
@ Adiabatic frictionless equations of motion

@ Horizontal and vertical discretization grid
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Spherical (horizontal) discretization grid

CAM-FV uses regular latitude-longitude grid:
@ Horizontal position: (A, #), where X longitude and 6 latitude.

@ Horizontal resolution specified in configure as:

-res A)\ x Af

where, e.g., A\ x Af = 1.9 x 2.5 corresponding to nlon=144,

nlat=96. Changing resolution requires a ‘re-compile’ and forcing datasets at the desired resolution.

Rectangular computational space
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Vertical coordinate

@ CAM-FV uses a Lagrangian (‘floating’) vertical coordinate ¢ so that

ds
= =0,
dt

i.e. vertical surfaces are material surfaces (no flow across them).

Figure shows ‘usual’ terrain-following vertical coordinate
n(ps, p) (where ps is surface pressure):

® 7(ps, p) is a monotonic function of p.
® 7(ps,ps) =1
: @ 1n(ps,0)=0
- @ 1(ps, Ptop) = Ntop-

.7~ Boundary conditions are:
A o dW(ZivPs) -0

° w = w(prop) =0

(w is vertical velocity in pressure coordinates)
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Vertical coordinate

@ CAM-FV uses a Lagrangian (‘floating’) vertical coordinate ¢ so that

ds _

— =0
dt ’

i.e. vertical surfaces are material surfaces (no flow across them).
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re:
Set ¢ = at time tsare (black lines).

For t > tsare the vertical levels deform as they
move with the flow (blue lines).

To avoid excessive deformation of the vertical
levels (non-uniform vertical resolution) the
prognostic variables defined in the Lagrangian
layers ¢ are periodically remapped (=
conservative interpolation) back to the Eulerian
reference coordinates 7 (more on this later).
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Vertical coordinate

@ Vertical resolution specified in configure as:

-nlev klev

where klev is the number of vertical levels, e.g., klev = 26 or

k/eV == 30 Changing vertical resolution requires a ‘re-compile’.

” Figure: ‘Center’ of a layer is referred

to as a ‘full’ level and referenced

with an integer value k. Layer k is
bounded by ‘half’ levels k & 1/2.

—/\— Klev+1/2

July 27, 2009
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Adiabatic frictionless equations of motion

The following approximations are made to the compressible Euler equations:

@ Spherical geoid: Geopotential ® is only a function of radial distance from the
center of the Earth r: ® = ®(r) (for planet Earth the true gravitational
acceleration is much stronger than the centrifugal force).
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Adiabatic frictionless equations of motion

The following approximations are made to the compressible Euler equations:

@ Spherical geoid: Geopotential ® is only a function of radial distance from the
center of the Earth r: ® = ®(r) (for planet Earth the true gravitational
acceleration is much stronger than the centrifugal force).

@ Hydrostatic approximation: Ignore the acceleration term in the vertical
component of the momentum equations so that it reads:

__op
g__p827 (1)

where g gravity, p density and p pressure. Good approximation down to horizontal
scales greater than approximately 10km.
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Adiabatic frictionless equations of motion

The following approximations are made to the compressible Euler equations:

@ Spherical geoid: Geopotential ® is only a function of radial distance from the
center of the Earth r: ® = ®(r) (for planet Earth the true gravitational
acceleration is much stronger than the centrifugal force).

@ Hydrostatic approximation: Ignore the acceleration term in the vertical
component of the momentum equations so that it reads:

__op
g__p827 (1)

where g gravity, p density and p pressure. Good approximation down to horizontal
scales greater than approximately 10km.

@ Shallow atmosphere: A collection of approximations. Coriolis terms involving the
horizontal components of Q are neglected (2 is angular velocity), factors 1/r are
replaced with 1/a where a is the mean radius of the Earth and certain other metric
terms are neglected so that the system retains conservation laws for energy and
angular momentum.
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Adiabatic frictionless equations of motion using Lagrangian

vertical coordinates

Assuming a Lagrangian vertical coordinate the hydrostatic equations of motion
integrated over a layer can be written as

. (o -
mass air: % = —Vh - (Vhip),
mass tracers: % = —Vi-(Vhqgdp),
horizontal momentum: % =—(¢+1) Kk x Vh — Vik — V0,
thermodynamic: % = =V (Vhdp®)

v

where dp is the layer thickness, v is horizontal wind, g tracer mixing ratio, { vorticity, f
Coriolis, k kinetic energy, © potential temperature. The momentum equations are
written in vector invariant form.
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Adiabatic frictionless equations of motion using Lagrangian

vertical coordinates

Assuming a Lagrangian vertical coordinate the hydrostatic equations of motion
integrated over a layer can be written as

mass air: 8&;5:)) = =V - (Vnop),
mass tracers: % = —V4 - (Vhqop),
horizontal momentum: 8{9‘;’1 = —(C+F)Kk X Vh— Vik — V,0,
thermodynamic: 8((5;;@) = =V (Vhdp©)
.
The equations of motion are discretized using an Eulerian finite-volume approach. )
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Finite-volume discretization of continuity equation

dp

s

Integrate the flux-form continuity equation horizontally over a control volume:

%//A(;pdA: f//A Vi (Vadp) dA, (2)

where A is the horizontal extent of the control volume. Using Gauss's divergence
theorem for the right-hand side of (2) we get:

2//5pdA:— OpV-hdA, (3)
ot JJa 9A

where QA is the boundary of A and 7 is outward pointing normal unit vector of JA.
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Finite-volume discretization of continuity equation

|

dp

|

e

Integrate the flux-form continuity equation horizontally over a control volume:

%/A(SpdA: —/Avh(vhép) dA, (2)

where A is the horizontal extent of the control volume. Using Gauss's divergence
theorem for the right-hand side of (2) we get:

/ opdA=— dpv-ndA, 3)
oA

of the control volume.

Right-hand side of (3) represents the instantaneous flux of mass through the vertical facesJ
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Finite-volume discretization of continuity equation

ﬁ/ SpdA=— ¢ Spv-AdA. (4)
ot JJa aA

Discretize (4) in space

8§p

AAZE Z [(3pV) - AAL], (5)

where
@ 6p = horizontal mean value of 6p
@ fr = unit vector normal to the fth cell face pointing outward
@ Als is the length of the face in question
@ Vr = instantaneous values of Vv at the cell face f
o

brackets represent averages in either A or 6 direction over the cell face.
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Finite-volume discretization of continuity equation

ﬁ/ SpdA=— ¢ opv-AdA. 4
ot JJa oA

Discretize (4) in space

8§p

AAZE Z [(3pV) - AAL], (5)

and integrate (5) over the time-step Atgy,

4
DA = DATP" — Dty Y [(0pV) - ] (6)
f=1

where n is the time-level index and the double-bar refers to the time average over Atyy,.

Each term in the sum on the right-hand side of (6) represents the mass transported
through one of the four vertical control volume faces into the cell during one time-step
(graphical illustration on next page).
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Finite-volume discretization of continuity equation:

Tracking mass

Lagrangian form

g

S Ll o —
RS 0 K .
,§ Pl
E ] O / ..... 5

2 e

The yellow areas are ‘swept’ through the control volume faces during one time-step. The
grey area is the corresponding Lagrangian area (area moving with the flow with no flow
through its boundaries that ends up at the Eulerian control volume after one time-step).

Black arrows show parcel trajectories.

Note that adding up the yellow areas results in the grey area!
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Finite-volume discretization of continuity equation:

Tracking mass

il ' | S
£y " ‘/ » Lagrangian form

B [\ <

|
o

Eulerian flux form

Until now everything has been exact. How do we approximate the fluxes numerically?

@ In CAM-FV the Lin and Rood (1996) scheme is used which is a dimensionally split
scheme (that is, rather than estimating the boundaries of the yellow areas and
integrate over them, fluxes are estimated by successive applications of
one-dimensional operators in each coordinate direction).
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Finite-volume discretization of continuity equation:

Tracking mass

Lagrangian form

/

Eulerian flux form

Until now everything has been exact. How do we approximate the fluxes numerically?

@ (before showing equations for Lin and Rood (1996) scheme) What is the effective
Lagrangian area associated with the Lin and Rood (1996) scheme?
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Finite-volume discretization of continuity equation:

Tracking mass

(d)

Figure: Red lines define boundary of exact
Lagrangian cell for a special case with

deformational, rotational and divergent wind field.

Blue colors is Lagrangian cell associated with the
Lin and Rood (1996) scheme. Dark blue shading
weights integrated mass with 1 and light blue
shading weights integrated mass with 1/2. See
Machenhauer et al. (2009) for details.

Until now everything has been exact. How do we approximate the fluxes numerically?

@ (before showing equations for Lin and Rood (1996) scheme) What is the effective
Lagrangian area associated with the Lin and Rood (1996) scheme?
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The Lin and Rood (1996) advection scheme

——n+1

55 =55+ £ [1 (5 + 00+ £ [2 (5 + P@5)].

where

FM = flux divergence in A or 6 coordinate direction

f% = advective update in X or # coordinate direction
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The Lin and Rood (1996) advection scheme

—<—n+1

5" ="+ P [§ (37 + @) ] + F 3 (57 + @1

@ Figure: Graphical illustration of flux-divergence operator F*. Shaded areas show
cell average values for the cell we wish to make a forecast for and the two adjacent
cells.
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Lin and Rood (1996) advection scheme

5" ="+ P[5 (50" + °@R")) | + F 3 (5" + @)

AU AU

@ Ul wes are the time-averaged winds on each face (more on how these are
obtained later).

@ F? is proportional to the difference between mass ‘swept’ through east and west
cell face.

o FAA=F+<ép >Atq,n D, where D is divergence.

@ On Figure we assume constant sub-grid-cell reconstructions for the fluxes.
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Lin and Rood (1996) advection scheme

—~—n+1

59 ="+ P [1 (30" + @) | + F [3 (55" + £ @PN) ]

AU T ALUST

Higher-order approximation to the fluxes:

@ Piecewise linear sub-grid-scale reconstruction (van Leer, 1977): Fit a linear
function using neighboring grid-cell average values with mass-conservation as a
constraint (i.e. area under linear function = cell average.).
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Lin and Rood (1996) advection scheme

5" = 3"+ P[5 (5" + °@R")) | + F 3 (5" + @)

AU AU

Higher-order approximation to the fluxes:

@ Piecewise linear sub-grid-scale reconstruction (van Leer, 1977): Fit a linear
function using neighboring grid-cell average values with mass-conservation as a
constraint (i.e. area under linear function = cell average.).

@ Piecewise parabolic sub-grid-scale reconstruction (Colella and Woodward, 1984):
Fit parabola using neighboring grid-cell average values with mass-conservation as a
constraint. Note: Reconstruction is C° across cell edges.
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The Lin and Rood (1996) advection scheme

5" ="+ P[5 (50" + @) | + F 3 (57 + @)

Higher-order approximation to the fluxes:

@ Piecewise linear sub-grid-scale reconstruction (van Leer, 1977): Fit a linear
function using neighboring grid-cell average values with mass-conservation as a
constraint (i.e. area under linear function = cell average.).

@ Piecewise parabolic sub-grid-scale reconstruction (Colella and Woodward, 1984):
Fit parabola using neighboring grid-cell average values with mass-conservation as a
constraint. Note: Reconstruction is continuous at cell edges.

@ Reconstruction function may ‘over’- or ‘undershoot’ which may lead to unphysical
and/or oscillatory solutions. Use limiters to render reconstruction function
monotone.
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Lin and Rood (1996) advection scheme

5" ="+ B [3 (50" + @) | + F 3 (5" + £ @8N)]

Advantages:
@ Inherently mass conservative.
@ Formulated in terms of one-dimensional operators.

@ Preserves a constant for a non-divergent flow field (if the finite-difference
approximation to divergence is zero).

@ Preserves linear correlations between trace species (if monotonicity filters are not
applied)

@ Has monotone options.
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Namelist variables for outer operators

TORD: Scheme used for F*, JORD: Scheme used for F?

Options for sub-grid-scale reconstruction (IORD, JORD = -2,1,2,3,4,5,6):
Piecewise linear (non-monotone), (van Leer, 1977).

Piecewise constant (Godunov, 1959).

Piecewise linear with monotonicity constraint (van Leer, 1977).

Piecewise parabolic with monotonicity constraint (Colella and Woodward, 1984).
Piecewise parabolic with monotonicity constraint (Lin and Rood, 1996).

Piecewise parabolic with positive definite constraint (Lin and Rood, 1996).

0000000

Piecewise parabolic with quasi-monotone constraint (Lin and Rood, 1996).

Defaults: I0ORD=J0ORD=4
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Namelist variables for outer operators

@ In top layers operators are reduced to first order:
if (k<klev/8) IORD=JORD=1
E.g., for k1ev=30 the operators are altered in the top 3 layers.
@ The advective fY (inner) operators are ‘hard-coded’ to 1st order.

For a linear analysis of the consequences of using inner and outer
operators of different orders see Lauritzen (2007).
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Adiabatic frictionless equations of motion

Hydrostatic equations of motion integrated over a Lagrangian layer

(o o
%06)  _ v, (wep),
(6 .
Wpa)  _ v, (wiep),
% = —(C+ F)K X U — Vir — V,0,
A(6p© »
(ai L~ (Vhdp®©)
The equations of motion are discretized using an Eulerian finite-volume approach. )
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Adiabatic frictionless equations of motion

Hydrostatic equations of motion integrated over a Lagrangian layer

——n+1 _xn A\ 1 =n 0 =N 7] 1 —~n S Varanl
S [2(5p +f(5p))}+F [2(5p +f(6p))},
a6 .
X0pa)  — 9, (wp),
% = —(C+ )k X Vh— Vhk — V,,
A(6p© .
(ai ) ¥, (7pO)
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Adiabatic frictionless equations of motion

Hydrostatic equations of motion integrated over a Lagrangian layer

Tl _ 5" A 1 e 05" 0 1 =N S Wl
op =3 +F [2((5p +f(6p))}+F [2(5p +f(6p))}7
mnﬂ = sub-cycled (discussed later),
% = —(C+F)K X Vh— Vi — V0,
% — V) (7h0p©)

Peter Hjort Lauritzen (NCAR) Atmospheric Dynamics July 27, 2009



Adiabatic frictionless equations of motion

Hydrostatic equations of motion integrated over a Lagrangian layer

" =+ [% (50" + f“’@"))} + F° E (50" + f*@"))} ,
mnﬂ = sub-cycled (discussed later),
/o =i —T [(C +f)k x Vh] — Vi (F2H) — AtgynP,
8(6pO)

- = —V,- (V46p®©)

o Mis operator using combinations of F*? and f*% as components to approximate
the time-volume-average of the vertical component of absolute vorticity. Similarly
for I but for kinetic energy. V is simply approximated by finite differences. For

details see Lin (2004).
@ P is a finite-volume discretization of the pressure gradient force (see Lin 1997 for
details).
v
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Adiabatic frictionless equations of motion

Hydrostatic equations of motion integrated over a Lagrangian layer

F=linFl _xon A 1 =n 0 N 7] 1 —n A, Tn
5p =3 +F [2(5,; +f(6p))]+F [2(5p +f(6p))},
%nﬂ = sub-cycled (discussed later),
\7,’,1+1 = \_/‘;’,7 — Fl |:(C + f) /: X \7h:| — Vi (an) = Atdy,,ﬁ,
&5p" =68+ F [% (83" + fe(‘efap"))} o 7 E (85" + fk(*eap"))] ,
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Adiabatic frictionless equations of motion

Hydrostatic equations of motion integrated over a Lagrangian layer

——n+1 _xn A | y— 0, =—n 7] 1 /—n SVaran
%p =op +F [5(5;» +f(6p))]+F[§(6p -l—f(ép))},
Spq = sub-cycled (discussed later),
\_/7,7Jr1 = \_/';,1 — Fl [(C + f) /? X Vh:| — Vs (an) — Atdyn//:\’,
oop""t —©ep 4 P B (65" + f"(eap”))} +F? B (85" + fA(G(Sp"))] :

@ No explicit diffusion operators in equations (so far!).
@ Implicit diffusion trough monotonicity constraints in F and f operators.

@ CAM-FV has ‘control’ over vorticity at the grid scale through implicit diffusion in
the operators F and f but it does not have explicit control over divergence near
the grid scale.
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Adiabatic frictionless equations of motion

Hydrostatic equations of motion integrated over a Lagrangian layer

——n+1 _xon A 1 —=n 0 <N 0 1 —=n AN
&p =3 +F [2(5;» +f(6p))]+F [2(5;» +f(6p))},
5pq = sub-cycled (discussed later),
P = [(4 K x vh] — (F%) — AtuynP+Atgn Vs (vD),
- < h < h 1 - < n < n 1 < h < h
5" =—85p"+ F [E (@5p + f'(@dp ))} + e {5 (@6p + £ (Gop ))] :

@ No explicit diffusion operators in equations.
@ Implicit diffusion trough monotonicity constraints in F and f operators.

@ The above discretization leads to ‘control’ over vorticity at the grid scale through
implicit diffusion but no explicit control over divergence.

@ Add divergence damping term to momentum equations.

Divergence damping uses explicit time-stepping; model will be unstable for too large divergence damping coefficients
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Total kinetic energy spectra

FV core

250 mb
10° g T —
3 —— 0.5x0.625 FV

10% B —— o divergence

damping

kinetic energy (m2/s2)

ool cond ool cond cood o o ol

—= ROTATIONAL
E -+ DIVERGENT "
10—5’ Lol Lol LN
10° 10’ 10%

spherical wavenumber (n)

Figure: Solid black line shows k=3 slope. Plot courtesy of David L. Williamson.

Without divergence damping there is a spurious accumulation of total kinetic
energy associated with divergent modes near the grid scale.
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Time-stepping: The ‘CD’- grid approach

Figure from Lin and Rood (1997).

Definition of Arakawa C and D horizontal staggering (Arakawa and Lamb, 1977):

@ C: Velocity components at the center of cell faces and orthogonal to cell faces and
mass variables at the cell center. Natural choice for mass-flux computations when
using Lin and Rood (1996) scheme.

@ D: Velocity components parallel to cell faces and mass variables at the cell center.

Natural choice for computing the circulation of vorticity (% - g—; .

Peter Hjort Lauritzen (NCAR) Atmospheric Dynamics July 27, 2009 18 / 30



Time-stepping: The ‘CD’- grid approach

For the flux- and advection operators (F and
f, respectively) in the Lin and Rood (1996)
scheme the time-centered advective winds
(u™, v*) for the cell faces are needed:

g g
[

An option: Extrapolate winds (as in
semi-Lagrangian models) = Noise near steep
topography (Lin and Rood, 1997).

G
[

Figure from Lin and Rood (1997).

@ Instead, the equations of motion are integrated forward in time for %Atdy,, using a
C grid horizontal staggering.

@ These C-grid winds (u*, v*) are then used for the ‘full’ time-step update
(everything else from the C-grid forecast is ‘thrown away’).

@ The ‘full’ time-step update is performed on a D-grid.
@ For a linear stability analysis of the ‘CD’-grid approach see Skamarock (2008).
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Vertical remapping

@ CAM-FV uses a Lagrangian (‘floating’) vertical coordinate s.

@ ¢ is retained ksplit dynamics time-steps Atgyy.

@ Hereafter the prognostic variables are remapped to the Eulerian vertical grid n (the
vertical remapping is performed using an energy conserving method, see Lin 2004).

@ ksplit is set in namelist:

-nsplit ksplit

@ The ‘physics time-step is set in the namelist:

-dtime At,

where At s is given in seconds.
=~ — —~_ 9 Atevery physics time-step At the variables are
S remapped in the vertical as described above.

@ So the dynamics time-step Atgy, is controlled

_/¥ with ksplit and At in the namelist:

At = ksplit X Atgyn.
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Vertical remapping

@ CAM-FV uses a Lagrangian (‘floating’) vertical coordinate s.
@ ¢ is retained ksplit dynamics time-steps Atqyy,.

@ Hereafter the prognostic variables are remapped to the Eulerian vertical grid n (the
vertical remapping is performed using an energy conserving method, see Lin 2004).

@ ksplit is set in namelist:

-nsplit ksplit

@ Default setting for the 1.9x2.5 resolution is
ksplit = 4 and At = 1800s (so Atdy, = 450s).

@ ksplit is usually chosen based on stability.

F
- gca
ACS T
Vntn it
I rtaions
. @ (meridians are converging towards the poles) To
stabilize the model (and reduce noise) FFT filters
are applied along latitudes north and south of the

tropics.

Peter Hjort Lauritzen (NCAR) Atmospheric Dynamics July 27, 2009 19 / 30



Subcycling and tracers

@ Continuity equation for air is coupled with momentum and thermodynamic
equations:
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Subcycling and tracers

@ Continuity equation for air is coupled with momentum and thermodynamic
equations:

@ thermodynamic variables and other prognostic variables feed back on the velocity field
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Subcycling and tracers

@ Continuity equation for air is coupled with momentum and thermodynamic
equations:

@ thermodynamic variables and other prognostic variables feed back on the velocity field

@ which, in turn, feeds back on the solution to the continuity equation.

Peter Hjort Lauritzen (NCAR) Atmospheric Dynamics July 27, 20



Subcycling and tracers

@ Continuity equation for air is coupled with momentum and thermodynamic
equations:

thermodynamic variables and other prognostic variables feed back on the velocity field
which, in turn, feeds back on the solution to the continuity equation.
Hence the continuity equation for air can not be solved in isolation and one must obey the maximum allowable
time-step restrictions imposed by the fastest waves in the system.
@ The passive tracer transport equation can be solved in isolation given prescribed

winds and air densities, and is therefore not susceptible to the time-step
restrictions imposed by the fastest waves in the system.

@ For efficiency: Use longer time-step for tracers than for air.
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Subcycling and tracers

@ Continuity equation for air is coupled with momentum and thermodynamic
equations:

@ thermodynamic variables and other prognostic variables feed back on the velocity field
@ which, in turn, feeds back on the solution to the continuity equation.
@ Hence the continuity equation for air can not be solved in isolation and one must obey the maximum allowable
time-step restrictions imposed by the fastest waves in the system.
@ The passive tracer transport equation can be solved in isolation given prescribed
winds and air densities, and is therefore not susceptible to the time-step
restrictions imposed by the fastest waves in the system.

@ For efficiency: Use longer time-step for tracers than for air.

At

Aty Aty Aty Aty

Aty

Attrac is time-step of the tracers. Specified in terms of nspltrac (default for 1.9 X 2.5 resolution is nspltrac=1).

Leads to a major ‘speed-up’ of dynamics. J
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Free-stream preserving

Simply solving the tracer continuity equation for q(Sp"Jr using Atirac will lead to incon-
sistencies. Why?

Continuity equation for air dp

00 -
S+ V- (5pTh) =0, (7)

and a tracer with mixing ratio g

20pa) 4 v (3pqu) =0, (8)

For g = 1 equation (8) reduces to (7). If this is satisfied in the numerical discretizations,
the scheme is ‘free-stream’ preserving.

Solving (8) with g = 1 using Atyac will NOT produce the same solution as solving (7)
nspltrac times using Atqy,! J
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Graphical illustration of ‘free stream’ preserving transport

of tracers

Assume no flux through east cell wall.

p
flow direction
o
time
@ Solve continuity equation for air p = dp together with momentum and
thermodynamics equations.
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Graphical illustration of ‘free stream’ preserving transport

of tracers

Assume no flux through east cell wall.

p
flow direction
pn+l/4
o
time
%ou“At%
@ Solve continuity equation for air p = dp together with momentum and
thermodynamics equations.
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Graphical illustration of ‘free stream’ preserving transport

of tracers

Assume no flux through east cell wall.

Sflow direction

n+2/4
P n+i/a
P

n

p

time

i'un+l/4At+unAt~j

@ Solve continuity equation for air p = dp together with momentum and
thermodynamics equations.

@ Repeat ksplit times
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Graphical illustration of ‘free stream’ preserving transport

of tracers

Assume no flux through east cell wall.

Sflow direction

time

.un+2/4AH_'un+ 1/4At~§~unAt43

@ Solve continuity equation for air p = dp together with momentum and
thermodynamics equations.

@ Repeat ksplit times
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Graphical illustration of ‘free stream’ preserving transport

of tracers

Assume no flux through east cell wall.

Sflow direction

time

LA

‘i_'un+2/4AH_'un+ 1/4At~§~unAt43

@ Solve continuity equation for air p = dp together with momentum and
thermodynamics equations.

@ Repeat ksplit times
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Graphical illustration of ‘free stream’ preserving transport

of tracers

Assume no flux through east cell wall.

flow direction

time

b A ™A ™ A A

@ Solve continuity equation for air p = dp together with momentum and
thermodynamics equations.

@ Repeat ksplit times
@ Brown area = average flow of mass through cell face.

@ Compute time-averaged value of g across brown area using Lin and Rood (1996)
scheme: < g >.

@ Forecast for tracer is: < q > x Y\ gpnti/keplit
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CAM-FV's advantage over other CAM dynamical cores

@ CAM-FV has a very efficient and quite consistent treatment of the tracers.

@ This is very important: Number of trace species in climate models are increasing
and accounts for most of the computational ‘work’ in the dynamical core.
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CAM-FV's advantage over other CAM dynamical cores

@ CAM-FV has a very efficient and quite consistent treatment of the tracers.

@ This is very important: Number of trace species in climate models are increasing
and accounts for most of the computational ‘work’ in the dynamical core.

@ Rasch et al. (2006) did a comprehensive study of the characteristics of
atmospheric transport using three dynamical cores in CAM (CAM-FV, CAM-EUL,
CAM-SL; acronyms defined later):

The results from this study favor use of the CAM-FV core for tracer transport.
Unlike the others, CAM-FV

@ is inherently conservative

o less diffusive (e.g. maintains strong gradients better)

@ maintains the nonlinear relationships among variables required by
thermodynamic and mass conservation constraints more accurately.
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CAM-FV's advantage over other CAM dynamical cores

@ CAM-FV has a very efficient and quite consistent treatment of the tracers.

@ This is very important: Number of trace species in climate models are increasing
and accounts for most of the computational ‘work’ in the dynamical core.

@ Rasch et al. (2006) did a comprehensive study of the characteristics of

atmospheric transport using three dynamical cores in CAM (CAM-FV, CAM-EUL,
CAM-SL; acronyms defined later):

The results from this study favor use of the CAM-FV core for tracer transport.
Unlike the others, CAM-FV

@ is inherently conservative

o less diffusive (e.g. maintains strong gradients better)

@ maintains the nonlinear relationships among variables required by
thermodynamic and mass conservation constraints more accurately.

However, with respect to ‘meteorology’ CAM-FV needs higher horizontal resolution to
produce results equivalent to those produced using the spectral transform dynamical core
in CAM (CAM-EUL). See Williamson (2008) for details.

V.
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Excessive polar night jet for increasing resolution
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(1st row) Zonally averaged horizontal wind contour plots vs latitude/height from 20-year-averaged AMIP cases. (2nd row)

Difference plots using NCEP reanalysis. Plots curtesy of Art Mirin.
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Noise in divergence field aligned with grid
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Divergence at model level 13 (first row) and 20 (second row) at days 1,2,3 (left,center,right

column), respectively.

The noise can be reduced by increasing the divergence damping coefficient (at the cost

of excessive damping in terms of total kinetic energy spectra analysis) or using high-order

divergence damping (work in progress).
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Noise problems

LONGITUDE : 113.86 '
Z (level) : 2665 §
TME . 13-APR2008 00:00 DATA SET: cam_init_2008041224_10
10| L
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£
10| L
20, | L
T T T T T
a0's 0% o son 80N
LATITUDE

Meridional wind, staggered (m/s)

Sporadic noise is visible occasionally in the meridional wind at upper levels in CAM
(noise was first detected 9 months into the simulation).
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|dealized settings for CAM

@ ADIABATIC: No physics. See example of application in Jablonowski
and Williamson (2006).

@ IDEAL_PHYS: Held-Suarez test case (Held and Suarez, 1994):

@ Simple Newtonian relaxation of the temperature field to a zonally symmetric
state

@ Rayleigh damping of low-level winds representing boundary-layer friction

@ AQUA_PLANET: Ocean only planet with zonally symmetric SST-forcing
using ‘full” physics package (Neale and Hoskins, 2000). See example
of application in Williamson (2008).
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Other dynamical core options in CAM

@ CAM-EUL (Collins et al., 2004):

@ Based on the spectral transform method
@ Semi-implicit time-stepping

@ Tracer transport with non-conservative semi-Lagrangian scheme (‘fixers' restore formal mass-conservation)

@ CAM-SL (Collins et al., 2004): Same as CAM-EUL but based entirely on a
semi-Lagrangian discretization (Collins et al., 2004).

® CAM-HOMME (High-Order Method Modeling
Environment, Thomas and Loft 2005):

N
S
NN

St
PR
R DA

i
st

@ Based on local spectral element method

@ For each element: Mass-conservative to machine precision and total
energy conservative to the truncation error of the time integration scheme

@ Discretized on cubed-sphere

@ Highly scalable!

@ Currently being tested in ‘AMIP mode’ (Contact Mark Taylor for details).
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