Non-local Momentum Transport Parameterizations

Joe Tribbia NCAR.ESSL.CGD.AMP

Outline

- Historical view: gravity wave drag (GWD) and convective momentum transport (CMT)
- GWD development

 -semi-linear theory
 -semi-semi-linear theory
 - -impact
- CMT development -theory
 - -impact

Both parameterizations of recent vintage compared to radiation or PBL

GWD

- 1960's discussion by Philips, Blumen and Bretherton
- 1970's quantification Lilly and momentum budget by Swinbank
- 1980's incorporation into NWP and climate models-Miller and Palmer and McFarlane

CMT

- 1972 cumulus vorticity damping 'observed' Holton
- 1976 Schneider and Lindzen -Cumulus Friction
- 1980's NASA GLAS model-Helfand
- 1990's pressure term-Gregory

Atmospheric Gravity Waves

Simple gravity wave model

Topographic Gravity Waves and Drag

- Flow over topography generates gravity (i.e. buoyancy) waves
- <u'w'> is positive in example
- Power spectrum of Earth's topography αk^{-2} so there is a lot of subgrid orography
- Subgrid orography generating unresolved gravity waves can transport momentum vertically
- Let's parameterize this mechanism!

Begin with linear wave theory

Simplest model for gravity waves:

$$\frac{\partial w'}{\partial t} + u_0 \frac{\partial w'}{\partial x} + \frac{1}{\rho_0} \frac{\partial p'}{\partial z} - \frac{\rho'}{\rho}g = 0$$

$$\frac{\partial u'}{\partial x} + \frac{\partial w'}{\partial z} = 0$$

$$\frac{\partial \theta'}{\partial t} + u_0 \frac{\partial \theta'}{\partial x} + w' \frac{\partial \theta}{\partial z} = 0 \qquad \text{with} \qquad \frac{\rho'}{\rho_0} = \frac{\theta'}{\theta_0}$$

$$\left(\frac{\partial}{\partial t} + u_0 \frac{\partial}{\partial x}\right)^2 \left(\frac{\partial^2 w'}{\partial x^2} + \frac{\partial^2 w'}{\partial z^2}\right) + N^2 \frac{\partial^2 w'}{\partial x^2} = 0$$

Assume w' $\alpha e^{i(kx+mz-\sigma t)}$ gives the dispersion relation $(\sigma - u_0 k)^2 (k^2 + m^2) - N^2 k^2 = 0$

or

$$\hat{\sigma} = \sigma - u_0 k = \pm \frac{Nk}{\sqrt{k^2 + m^2}},$$

Linear theory (cont.)

Sinusoidal topography ; set σ =0.

(b)

Semi-linear Parameterization

Propagating solution with upward group velocity

$$w' = u_0 k h_m \cos(kx + mz)$$
$$u' = -u_0 m h_m \cos(kx + mz)$$

$$\rho_0 \overline{u'w'} = -\frac{1}{2}u_0^2 \rho_0 km h_m^2$$

u₀ In the hydrostatic limit

 $m = \frac{N}{2}$

 $\rho_0 \overline{u'w'} = -\frac{1}{2} u_0 \rho_0 k N h_m^2$

$$\overline{w'} = -\frac{1}{2}u_0^2 \rho_0 km h_m^2$$

The surface drag can be related to the momentum transport

$$D = \int_{0}^{2\pi/k} p'(x,h) \frac{\partial h}{\partial x} dx$$

$$D = -\int_{0}^{2\pi/k} \rho_0 u' w'|_{z=0} dx$$

$$= \int_{0}^{2\pi/k} p'(x,0) \frac{\partial h}{\partial x} dx$$

Momentum transport invariant by Eliassen-Palm. Deposited when linear theory is invalid (CL, breaking)

$$N_{\text{total}}^{2} = N^{2} \left\{ 1 + \left(\frac{N\delta h}{u_{0}}\right) \cos\phi \right\}$$
$$\eta_{\text{total}} = \eta \left\{ 1 + Ri^{1/2} \left(\frac{N\delta h}{u_{0}}\right) \cos\phi \right\}$$

δh=isentropic displacement η=U_z_ φ=phase

Gravity Wave Drag Parameterization

Convective or shear instability begins to dissipate wave- *momentum flux no longer constant*

Waves propagate vertically, amplitude grows as $\rho^{-1/2}$ (energy cons.). Eventually waves induce unstable flow situation. Amplitude is assumed to remain exactly critical from there on. This leads to momentum flux *divergence* and wind tendency:

$$\partial_t [u] \sim -\frac{1}{\rho} \partial_z \rho [u'w'] \sim -\hat{U}\hat{W} \frac{1}{\rho} \partial_z \rho$$

Conceptual Model: 2D, linear, WKB wave model. Forcing by subgrid variance in topography, heating amplitudes

CAM "Physics" - Gravity Wave Drag

Gravity Wave Sources generally located in troposphere.

In nature, sources include convection and fronts in addition to flow over mountains.

Current parameterization includes orographic source plus spectrum of non-zero phase speed waves. Horizontal scales of GW span 1000s of km (resolved) to several km (need to be parameterized). CAM_future will prognose convective and frontal sources

Propagation of AGW

Alexander 2002 - CEDAR

Impact of changing:

critical Froude number

turbulent mountain stress : $z_0(h)$

GWD summary

- Simple parameterization built out of linear theory
- Extensible to more elaborate non-linear cases; e.g. Lott and Miller blocking effects and orographic-flow alignment
- CAM code modules gw_drag.F90 and trb_mtn_stress.F90
- Can change surface winds directly and indirectly

CMT rationale

- In cumulus towers updraft and downdraft transport constituents in the vertical
- Reynolds' stresses like <u'w'> can lead to substantial momentum transfer between PBL and cloud top
- Cumulus parameterization already uses computes vertical transfer of constituents like q and h
- Use this to parameterize CMT

Convective Momentum Transport

Are we forgetting about something?

In-Cloud Velocities

Schneider and Lindzen (1976)

assumes that in-cloud velocities are dependent ONLY on lateral entrainment and detrainment rates

> Zhang and Cho (1991) Gregory et al (1997)

account for the pressure gradient term

Gregory et al: (1997)

$$\mathbf{P}_{G}^{u} = -C_{u} M_{u} \frac{\partial \bar{\mathbf{v}}}{\partial p}$$
$$\mathbf{P}_{G}^{d} = -C_{d} M_{d} \frac{\partial \bar{\mathbf{v}}}{\partial p}$$

How do you get this expression for the pressure gradient term?

From the anelastic pressure equation:

$$\nabla^2 p = \nabla \left\{ -2\rho \left[\frac{\partial w}{\partial x} \frac{\partial u}{\partial z} + \frac{\partial w}{\partial y} \frac{\partial v}{\partial z} + \frac{\partial v}{\partial x} \frac{\partial u}{\partial y} \right] - \rho \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial w}{\partial z} \right)^2 \right] + w^2 \rho \frac{\partial}{\partial z} \left(\frac{1}{\rho} \frac{\partial \rho}{\partial z} \right) \right\},$$

Linearize the RHS to get in x-z plane:

$$\nabla^2 \left(\frac{\partial p}{\partial x} \right) = \frac{\partial}{\partial x} \Biggl\{ -2\rho \frac{\partial w}{\partial x} \frac{\partial \overline{u}}{\partial z} \Biggr\}.$$

Lastly, assume sinusoidal form in x and z for w and p. C's are tuning coefficients for these sinusoidal scales

SCAM Example

Schneider and Lindzen (1976)

Gregory et al (1997) in CAM3:

2.0 *⁻¹ ée,

1.6

1.2

0.8

0.4

0.0

-0.4

-0.8

-1.2

-1.6

-2.0

-2.4

-2.8

-3.2

-3.6

-41

-90

Schneider & Lindzen (1976) in CAM3:

How does CMT influence climate?

Details in Richter and Rasch (2007)

 $f \triangle [v] \propto - \triangle [F_{cx}]$

Hadley Circulation

Control - OBS

Schneider & Lindzen (1976)-control

What about the tuning coefficient?

$$\mathbf{P}_{G}^{u} = -C_{u}M_{u}\frac{\partial \bar{\mathbf{v}}}{\partial p}$$
$$\mathbf{P}_{G}^{d} = -C_{d}M_{d}\frac{\partial \bar{\mathbf{v}}}{\partial p}$$

- SCAM vs TOGA COARE CRM simulation comparison (collaboration with Chris Bretherton)
- CRM: 250 x 250 km; dx = dy = 1 km
- forced by SST's, large scale vertical velocity, and horizontal advection

CMT summary

- Makes significant change in tropical circulation and convection
- Makes use of linearized theory
- Also used high resolution process model and single column model (SCAM) to refine parameterization
- Cu=0.4 gives best fit in SCAM tests
- In module zm_conv.F90