PBL and Cloud Macrophysics in CAM

CAM Tutorial

Jul. 28, 2009

Sungsu Park

Ser.

CGD.NCAR

a lance and parts

Color and interest

OUTLINE

Parameterization of Symmetric Turbulence (i.e., PBL Scheme)

- Dry Turbulence Scheme (CAM3 PBL)
- Moist Turbulence Scheme (CAM4 PBL)

II. Cloud Macrophysics

1.

- Net Condensation Rate of Water Vapor into Cloud Liquid (Q)
- Cloud Fraction (a)
- Vertical Overlap of Cloud Fraction

DEFINITIONS

Model Names

- *CAM3.5* : CAM3.0 + *Revised Deep Convection* + etc.
- CAM4 : CAM3.5 + All New Atmospheric Physics (~ CAMUW)

I. Parameterization of Symmetric Turbulence in CAM

 $\frac{\partial \overline{A}}{\partial t} = -\vec{V} \cdot \nabla \overline{A} + \overline{Q}_A - \frac{\partial}{\partial z} \overline{w'A'}$

Adiabatic Mixing by Turbulences

Symmetric Turbulence

(PBL Scheme ~ Symmetric Turbulence Scheme)

Asymmetric Turbulence

(Convection Scheme ~ Asymmetric Turbulence Scheme)

Single Small-Scale Turbulence

$$\overline{w'A'} = -l \cdot l \cdot \left| \frac{\partial |\overline{u}|}{\partial z} \right| \cdot S \cdot \Gamma_A$$
CAM3 Dry Turbulence Scheme with Non-Local Term
CAM4 Moist Turbulence Scheme

$$\overline{w'A'} = l \cdot V \left(\overline{(w'\theta'_v)_o}, \overline{(w'u')_o}; \sqrt{e} \right) \cdot S \cdot \Gamma_A \quad , \quad e \equiv 0.5 \cdot (\overline{u'^2} + \overline{v'^2} + \overline{w'^2})$$

$$\frac{\partial}{\partial t}\overline{w'A'} = -\frac{\partial}{\partial z}\overline{w'w'A'} + \dots , \quad \overline{w'w'A'} = -l \cdot V(\sqrt{e}) \cdot S \cdot \frac{\partial}{\partial z}\overline{w'A'}$$

Higher Order Closure

$$\frac{\partial}{\partial t}\overline{w'w'A'} = -\frac{\partial}{\partial z}\overline{w'w'w'A'} + \dots \quad , \quad \overline{w'w'w'A'} = -l \cdot V(\sqrt{e}) \cdot S \cdot \frac{\partial}{\partial z}\overline{w'w'A'}$$

$$\begin{bmatrix} \overline{A}(t + \Delta t, z = 1) \\ \overline{A}(t + \Delta t, z = 2) \\ \overline{A}(t + \Delta t, z = 3) \\ \overline{A}(t + \Delta t, z = 4) \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & c_{34} \\ c_{41} & c_{42} & c_{43} & c_{44} \end{bmatrix} \cdot \begin{bmatrix} \overline{A}(t, z = 1) \\ \overline{A}(t, z = 2) \\ \overline{A}(t, z = 3) \\ \overline{A}(t, z = 4) \end{bmatrix}$$
 Transilient Theorem

$$\overline{w'A'} = -K_A \cdot \left(\frac{\partial \overline{A}}{\partial z} - \gamma_A\right)$$
$$K_A = l \cdot V \cdot S_A$$
$$\gamma_A$$

Dry Convective PBL

Dry Convective PBL

Comparison of Turbulence Velocity

CAM3 Dry Turbulence

CAM4 Moist Turbulence

$$u_* = \left| \left(\overline{w'u'} \right)_o^2 \right| \qquad e = 6 \cdot \frac{l}{\sqrt{e}} \cdot \left(\left(g/\theta_v \right) \cdot \overline{w'\theta_v'} - \overline{w'u'} \cdot \frac{\partial u}{\partial z} \right) + 24 \cdot \frac{l}{h} \cdot \left(\left\langle e \right\rangle - e \right) \\ w_* = \left[\left(g/\theta_v \right) \cdot \left(\overline{w'\theta_v'} \right)_o \cdot h \right]^{1/3} \qquad w_* = \left[2.5 \cdot \left(g/\theta_v \right) \cdot \int_0^h \left(\overline{w'\theta_v'} \right)(z) \cdot dz \right]^{1/3}$$

CAM4 handles elevated sources of turbulent energy.
 → Critical for simulating moist turbulence associated with clouds.

LW Radiative Flux at the top of Cloud

[Nicholls 1984, Quart. J. R. Met. Soc.]

TURBULENCE GENERATED BY BOUNDARY HEATING

Turbulence is generated by MBL top LW cooling driven by stratocumulus

TURBULENCE GENERATED BY CONDENSATION HEATING

Turbulence is generated by condensation-evaporation heating, which is in turn controlled by cloud fraction within the grid.

SUMMARY

In contrast to the dry turbulence scheme in CAM3, the moist turbulence scheme in CAM4 takes into account of elevated sources of TKE associated with clouds.

→ CAM4 successfully simulates cloud-topped PBL as well as dry PBL.

Π. **Cloud Macrophysics in CAM**

WHAT IS CLOUD ?

CLOUD : The sum of volume elements containing condensates. 5 key properties : a, LWC, IWC, N(r_i), N(r_i)

- **C**_{LI} : Heterogeneous (Immersion) freezing Bergeron-Findeisen deposition freezing
- **C**_{LS} : Accretion of cloud liquid by snow Bergeron-Findeisen conversion
- \mathbf{C}_{LR} : Autoconversion of cloud liquid into rain Accretion of cloud liquid by rain
- **C**_{IS} : Autoconversion of cloud ice into snow Accretion of cloud ice by snow
- C_{RS}: Accretion of rain by snow Heterogeneous freezing Homogeneous freezing

: Sedimentation of cloud liquid : Sedimentation of cloud ice
: Evaporation of sedimented cloud liquid
: Evaporation of sedimented cloud ice
: Evaporation of rain
: Evaporation of snow
: Net condensation into cloud liquid
: Net condensation into cloud ice

What does Cloud Macrophysics do?

• Condensation rate of water vapor into cloud liquid (Q)

• Cloud fraction (a)

Vertical overlap of cloud fraction

I. BULK SATURATION ADJUSTMENT

II. PDF-based SATURATION ADJUSTMENT

BULK vs PDF-based Approach

$$a(U) = \left[\frac{U - U_c}{1 - U_c}\right]^2 \qquad \qquad \left[\frac{\Delta q_t}{q_{s,w}}\right] = 1 - U_c \quad \Longrightarrow \quad a(U) = \dots$$

$$U_{clr} = \frac{U-a}{1-a} = \frac{(1-U_c)\sqrt{a} + U_c - a}{1-a}$$
$$U_{clr}(a \rightarrow 1) = \left[\frac{1+U_c}{2}\right]$$

 $U_{clr} = \frac{U-a}{1-a} = \dots$

 $U_{clr}(a \rightarrow 1) = 1$

Consistency between Cloud Fraction and In-Cloud LWC

- Force the layer at p = 900 [hPa], T = 280 [K], q_v = 6.84 [g kg⁻¹], q_I = 0.16 [g kg⁻¹], a = 0.6, Δp = 20 [hPa] with various external forcings of temperature (A_T) and water vapor (A_{qv})
- Examine 'Q' and ' Δa vs $\Delta q_{I,cloud}$ '.
- Test for Bulk and PDF-based approach with a half width of total specific humidity = $0.1*q_s(T,p)$ corresponding to $U_c = 0.9$.

3 Different Configurations of Bulk Saturation Adjustments

Vertical Cloud Overlap

$$a_{overlap} = \lambda \cdot a_{\max,overlap} + (1 - \lambda) \cdot a_{ran,overlap}$$

 $\lambda = \exp(-\Delta z/2000)$

- \rightarrow Evaporation of Precipitation
- \rightarrow Deposition of Aerosol \rightarrow Aerosol Indirect Effect
- \rightarrow Radiation
- \rightarrow etc. (wet chemistry...)

3 Cloud Types in CAM3

Cumulus

 $a_c = f(M)$, M: Convective Updraft Mass Flux

• RH (Relative Humidity) Stratus $a_{s,RH} = f(\overline{RH})$, \overline{RH} : Grid-Mean Relative Humidity

(Klein-Hartmann) Stratus

 $a_{s,KH} = f(S)$, $S \equiv \theta_v(700) - \theta_v(1000)$

Vertical Cloud Overlap in CAM

- Radiation (SW and LW)
 - Combine 'cumulus' and 'stratus' into 'one single cloud' in each layer.
 - Maximum overlap in each of three regions representing the lower, middle, and upper troposphere and random overlap between these regions.
- Convection (deep and shallow convections)
 - Whenever convective precipitation flux is positive, convective precipitation area is 1.
- Stratiform Microphysics
 - Stratus is maximally overlapped with stratiform precipitation area.
- Wet Deposition of Aerosol
 - Use additional overlapping assumptions different from the above....

We need to use a unified vertical cloud overlap structure for all schemes by considering different vertical overlapping natures of cumulus and stratus.

- Cumulus is not horizontally overlapped with stratus in a single layer.
- Cumulus has its own LWC different from the LWC of stratus.
 → Cumulus and stratus have different radiative properties.
- Cumulus has a different vertical overlapping structure from stratus :

 Cumulus is maximally overlapped with cumulus regardless of vertical separation distance.

Unified Cloud Overlapping Scheme

- Horizontal Geometry
 - 'Cumulus' and 'Stratus' are non-overlapped
- Vertical Geometry
 - Cumulus: 'Maximally' overlapped
 - Stratus: 'Randomly' overlapped

Overlapping Area Between 'Convective Precipitation Area' and 'Stratus Cloud Fraction'

$$\overline{a}_{s}^{c} = \sum_{i=i_{\min}}^{i_{\max}} \left[\frac{i}{N}\right] \cdot \left[\frac{P(i)}{P_{TOT}}\right]$$

 $i_{\min} = \max(0, \max(N \cdot a^c - n, 0) - N \cdot a_r)$

$$i_{\max} = \min(N \cdot a_s, N \cdot a^c - \max(n - N \cdot a^m, 0))$$

$$P(i) = \left({}_{N \cdot a_s} C_i \right) \cdot \left({}_{N \cdot a^c} P_i \right) \cdot \left\{ \sum_{j=j_{\min}}^{j_{\max}} \left[\left({}_{N \cdot a_c} C_j \right) \cdot \left({}_{N \cdot a^m} P_j \right) \cdot \left({}_{N \cdot a^c - i} P_{N \cdot a_c - j} \right) \cdot \left({}_{N - N \cdot a^c - j} P_{N \cdot a_s - i} \right) \right] \right\} \cdot \left({}_{N \cdot a_r} P_{N \cdot a_r} \right)$$

 $j_{\min} = \max(N \cdot (a_c - a^c) + i, 0)$

$$j_{\max} = \min(N \cdot a_c, N \cdot a^m, N \cdot (1 - a^c - a_s) + i)$$

Western Pacific Warm Pool (6.6°N,100°E). ANN.

on in CAM !

SUMMARY

Parameterization of Symmetric Turbulence

- Dry Turbulence Scheme (CAM3 PBL)
- Moist Turbulence Scheme (CAM4 PBL)
 - Treatment of elevated source of TKE associated with cloud \rightarrow successful simulation of cloud-topped PBL as well as dry stable and dry unstable PBL

II. Cloud Macrophysics

Ι.

- Net Condensation Rate of Water Vapor into Cloud Liquid (Q)
 - Bulk Saturation Adjustment
 - PDF-Based Saturation Adjustment
- Cloud Fraction (a)
 - Quadratic formula of a(U)
 - a(U) from the PDF-based approach
 - Consistency between cloud fraction and in-cloud LWC
- Vertical Overlap of Cloud Fraction
 - Unified cloud overlapping scheme for simultaneous treatment of cumulus and stratus

Response of MSC to increasing SST

