Modifying Model Code

Andrew Gettelman

What we have done:

Log-in to a super-computer

Run the model

Change run options and output

Run the diagnostic scripts

Change configuration options

Run the Single Column Model
Visualize output with NCVIEW & NCL

The Choice
Blue Pill: D

Leave now and use CAM as

before without modifying code

Red pil: D

“You stay in Wonderland and |
show you how deep the rabbit
hole goes”

Morpheus, 1999

Modifying Model Code

How to find things in the code: grepccm

Tracking Changes in Source code
— Good practices

Simple modifications to source code
Software interface standards
Exercises: Simple code modifications
— grepccm

— Adding an output field from a variable

— Modifying a parameter in the code
— Advanced: Make a new variable

Structure of CAM Code

 CAM code (particularly physics code) is typically
divided into ‘modules’ that perform a set of tasks
and match a standard interface

 Modules typically have the following

components:

— Register

— Initialize

— Time-step Initialize
— Tendency

:tell the model how to set up
:set up constants

:specific constants for a timestep
:code run every timestep

MOIST CONVECTION
STRATIFORM CAM3 0 . 1 1 @ PHYSICS STATE UPDATE (PHYSICS_UPDATE)

I’:ﬁr %' :;L%":E | @) PHYSICS COPY STATE UPDATE (PHYSICS_UPDATE)
) () TENDENCY UPDATE (PHYSICS_PTEND_SUM)
INITIALZATION
STEPON (E) ENERGY CHANGE CHECK (CHECK_ENERGY_CHNG)
INTI 1 |
RADIATIONINT | [o_p_coupting] PHYSPKG
S DYNAMIC TO PHYSKCS PHYSICS TO DYNAMKCS DYNAMKS
CONVECT_SHALLOWL_INIT VARIABLE CONVERSION PHYSKS Wm PBL VARIABLE CONVERSION
- TPHYSAC
CLDFRC_INIT | won-seve phvscs P [
e —— CHECK_ENERGY_FIX TPHYSBC AEROGOL - vor @ 1 VD_INTR H VDIFF I
CONVECT DEEPUNT [7x @ [
DADADJ @_{ GW_INTR I I TRBINTR I
CLDINTI [| o DRY ONLY —>
| | | | |
STRATECES waT CONV_DEEP_TEND| |CONV_SHALLOW_TEND| |STRATIFORM_TEND © CONV_DEEP_TEND_2 RADIA ;u_&j G CE[E) popy—
PARAM_CLOOFTICS_INIT ’_ DEEP CON O—— AEROSOL_WET_NTR l I %&mmm
ZM_CONVR CMFMCA = CONVTRAN J—
CAPE CALCULATION @ @ OFTICAL PROPERTIES
BOUYAN [M RANEALL EV. now @ r@ SEDIMENTATION VELOGTTIES BT WRAEREE = —PARAM_CLDOFTICS_CALC™] PARAMETERS FOR OVERLAP
CLOUD PROPERTIES etk ot DOOND_SEDIMENT_vaL | SLOUD LIGUID AND ICE SED. TENDENCIES _' CLDOVRLAP
CLDPRP oo @ ZM_CONV_EVAP — | TLDCOND_SEDIMENT_TEND WA R
@ @ @ e T CRONE_DATA_VERT_NTERP CLOUD ExeeTY
CLOUD-BASE MASS FLUX [RARGPORT CLOUD WATER AND I0E @ LOCATION SOLAR INFORMATION _' CLDEMS
CLOSURE |—{ | CONVTRAN) CoveceOaeret e RADINP S —
@ y SotimiSutntes | | WATERICE PARTICLE SZE
TENDENCEES FRACTION AFTER TRANSPORT @ AEROSOL MASS MIXING RATIO AQSAT _’ CLDEFR
Q1Q2_PJR — CLDFRAC ™ GET_AEROSOL "
PERTURDED FRACTION for chires | SET_AEROSOL_ CLOUD LIQUID WATER PATH
CLDFRAC PR— AL ICE EFFECT OF S04 ON EFFECTIVE RADIUS FROM_PROGNOSTICS CLDCLW
— cwow AT_F'CE' AEROSOL_INDIRECT RA.;Z:\;;\;X
PROGNOSTIC CLOUD WATER LW RADIATION - gmagg;ud
— PCOND RADCLWMX ovo
) ' - CLDSAV
CLOUD WATERSCE SZE FOR RAD. @ LW+SW NET RADIATIVE HEATING
CLDEFT — RADHEAT_NET

o O
; ;ﬁ};’ CAM Tutorial: Modifying Code

CAM Physics Structure

Note on the following the different components of
‘stratiform’ (stratiform.F90)

stratiform init
stratiform tend

It then calls a bunch of other routines too:

cldcond sediment vel
cldcon Sediment tend
cldfrc

cldwat fice

ccond

Some routines are in stratiform.F90
Some are in other modules (e.g.: cloud fraction.F90)
Similar for others (e.g. Radiation)

CONV_SHALLOW_TEND

O

|
STRATIFORM_TEND O;

OlG,

ACA

©

-

CLOUD LiQUID AND ICE
SEDIMENTATION VELOCITIES

[_EVAP

(.‘ S x
Is 3 ;’ CAM Tutorial: Modifying Code

©

CLDOOND_SEDIMENT _VEL

CLOUD LIOUND AND ICE SED. TENDENCIES

FRACTION AFTER TRANSPORT

PERTURBED FRACTION for dC/dRH

_SEDIMENT _TEND

W

o Corroncies Delcarad Wt
! nto Qoed e Bew (KINges

CLDFRAC —©

CLDFRAC FRACTIONALKCE
CLDWAT_FICE
PROGMOSTIC CLOUD WATER
@ PCOND
CLOUD WATERSCE SIZE FOR RAD. @
CLDEFT [—

Goal: Standard Interfaces

With the right coding, other process codes can
usually be integrated into CAM using an
‘interface’:

* ‘Interface’ translates the CAM state into
definitions needed by a parameterization

* Takes the result, converts it to a tendency, and
makes sure it gets applied to CAM state

* This is how most physics parameterizations
work in CAM

Tendencies: x, = X, + dX/dt * At

* Logical for an ‘Interface’ Model
e Easy to process split or time split
e Easy to check energy and mass conservation

— Minimizes and centralizes impact on model

* Processes flexible with time-step

* Easier to diagnose processes and close
budgets

— Tendencies can often be written out as variables

grepccm: how to find things

grepccm is a modified version of grep that from
a build directory (“bld”) will search for a string in
all CAM source code directories

grepccm keys off of ‘Filepath’: a file created
when the model is built (compiled)

Example: grepccm

. grepcem sst_option (Used for aquaplanet)
* Result:

-——- searching /fis01/cgd/cms/andrew/camtutorial2009/
cam tutorial cam3 6 48/models/ocn/dom

sst data.F90: integer,parameter :: sst option =1

sst data.F90: if(sst option .lt. 1 .or. sst option .gt. 10) then

sst_data.F90: call endrun ('SSTINT: sst_option must be between 1 and
10")

sst data.F90: if(sst option == 1 .or. sst option == 6 .or. &

sst _data.F90: sst_option == 7 .or. sst option == 8) then

sst data.F90: if(sst option == 2) then

sst data.F90: if(sst option == 3) then

sst data.F90: if(sst option == 4) then

sst data.F90: if(sst option == 5) then

sst data.F90: if(sst option == 6) then

sst data.F90: if(sst option == 7) then

sst data.F90: if(sst option == 8) then

sst data.F90: if(sst option == 9) then

sst data.F90: 1if(sst option == 10) then

Principles for modifying code

* Track all your changes and all your work
— Easy reproduceability is key

* Good practice to mark your fortran changes
| typically bracket mine with t++ag, ! --ag
* With a script and the modified source code,
you can reproduce a run

— Code takes a ‘mod_src’ directory and a script

— Keep these around for EVERY RUN, even minor
changes.

— Good practice: script with same name as case

Principles (2)

e Also DOCUMENT what each run does!

— case hame
— comments on what you did & why (hypothesis)
— also basic result or conclusion

* Can be a simple text file
* Can also be a spreadsheet, database, wiki, etc

— collaborative spaces good for group work if others
need access to what you did

Here is a sample: /blhome/andrew/tutorial/tutorial runs.txt

22 July 2009

test.csh: first test run with regular script (based on run-ibm-tutorial.csh)

23 July 2009

scamtest.csh: test run with scam script (run-scam-tutorial.csh)

24 July 2009

scamschedule.csh
testschdeule.csh

pair of scheduled runs to test bluefire queuing system

test icritc20ppm.csh
CAM run to test parameter change icritc=20ppm (from 9.5)

test icritc5ppm.csh
CAM run to test parameter change icritc=5ppm (from 9.5)

25 July 2009

BACKUPS
* Finally: BACK UP YOUR SCRIPTS and CODE!

* /ptmp is scrubbed ‘occasionally’

— Do NOT leave code here, only things that can be
reproduced (model output)

 /blhome is backed up: but don’t count on it
* Best to occasionally tar up scripts and back

them up.
— Scripts and source mods are small

* A Backup is part of the exercise. Do it.

Simple Code Modifications

One common thing is to output a variable that
is not already output from the model

Example: If you look in the documentation,
there are fields for in-cloud water path:
ICLDIWP (ice) and ICLDTWP (liquid + ice)

There is no field for ICLDLWP
Lets make one

What makes an output variable?
* |CLDIWP only appears 3 times:

call addfld ('ICLDIWP', 'gram/m2', pver,'A','In-cloud ice water path’, &
phys decomp, sampling seq='rad lwsw')

call add default ('ICLDIWP', 1, ' ')

call outfld('ICLDIWP' ,cicewp , pcols,lchnk)

addfld: assigns the variable (init)
add default: adds it by default to hO (init)
outfld: tells the code to write a variable (cwp) to it (tend)

* Not going to make it default. Just need:
— addfld (init), outfld (tend)
— variable to put into outfld

2 We will do this as an exercise in CAM

Modifying Parameters in Code

can change ‘answers’ through the namelist
— CO, for example

orconfigure
— change the dynamical core or resolution
Now: changes by modifications to code

— Fortran code changes

Start with ‘parameter’ changes

Parameter Adjustment

What to modify?

Not a physical constant (gravity, pi, etc)
— Will discuss this in a minute

Could change solar constant! (we recently did)
— That is another story

Let’s pick something unconstrained:

— Critical mass for auto-conversion of ice to snow:
icritc

— Tomorrow you will do this again in CCSM

Icritc

The critical mass for auto-conversion controls
when ice is converted to snow (precipitation)

PSAUT — Gi_ja.-utH(gi T Q"i-(?)
.lcritc = q;,
Where H is the Heavyside function that is 1

when it is positive, 0 when negative and C, ., is
a constant rate.

See CAM3.0 Description document (eq 4.150)
for more info

Software Interface Standards:
Requirements

* Must conserve vertical integrals of:
— Mass of each constituents
— Momentum
— Total energy
— Dry static energy

 Must not modify state directly
* Must produce tendencies to modify state

Interface Standards

* Detailed documentation exists on the Physics
driver (register, init, tend) and physics state

structures

e Utilities are available:
— Physical constants (shr_const._ mod = physconst)

— Output (already covered this)

— Physics buffer: place to put variables not in state
needed from other parameterizations, or across time-
steps

— Tools for managing constituents and time also exist

Physical constants

* Physical constants are put in one place in ccsm:
CAM ROOT/models/csm share/shr/shr const mod.F90

* These get remapped in CAM in

CAM ROOT/models/atm/cam/src/physics/cam/physconst.F90

* As an exercise, we will go find some

Final Word: Talk to us

If you are going to undertake a major piece of
code: talk to us (AMP group) first!

We can help. It may fit with other priorities.

Good coding and a good foundation makes it
easier to ‘port’ (move) to different versions.

We may have development versions of the
code that would be better than release
versions.

Where to get help

* CAM Documentation (on the web)
http://www.ccsm.ucar.edu/models/atm-cam/

e CAM Code itself

SCAM ROOT/models/atm/cam/bld/namelist files/
namelist definition.xml

Configure —h

 Bulletin Board:

http://bb.cgd.ucar.edu
(good for getting things running on a cluster)

Exercises

Find things in the code: grepccm
—‘aqua_planet’, Physical Constants

Adding an output field (CAM)
Modifying a parameter in the code (SCAM)
Impact on model simulations (SCAM, CAM)

— Visualize, Diagnostics
Advanced: make a variable and output it (CAM)
Coding standards, Tracking & Backup

grepccm: how to find things

grepccm is @ modified version of grep that from
a build directory (“bld”) will search for a string in
all CAM source code directories

grepccm keys off of ‘Filepath’: a file created
when the model is built (compiled)

Let’s try it.

grepccm

* On bluefire: copy the tool into your path
mkdir bin
cp /blhome/andrew/bin/grepccm bin

 Now go to a model bld directory (mine or yours)
cd /ptmp/andrew/test/bld

* Look at “Filepath”

less filepath

* Run grepccm
grepccm aqua planet

e Where are the switches for SST fields?

Physical Constants

Using grepccm (from a bld directory):

What is the value used for the Stefan-
Bolzmann constant for blackbody radiation (o)
used in S=0T*

Where is this found in CAM, CCSM?

Take a look at these routines to see what is
there: other constants

Questions:
— What is the 15t digit after the decimal place in wt?
— What would you change for a CAM-Venus model?

Simple Code Modifications

One common thing is to output a variable that
is not already output from the model

Example: If you look in the documentation,
there are fields for in-cloud water path:
ICLDIWP (ice) and ICLDTWP (liquid + ice)

There is no field for ICLDLWP
Lets make one

Find ICLDIWP

* Use grepccm from a bld directory on bluefire

cd /ptmp/andrew/test/bld/
grepccm ICLDIWP

* Where should we go?

Let’s start looking and modifying

* Make your own version of the routine

cd ~/tutorial
mkdir /blhome/$USER/tutorial/mods icldlwp

* Find the full path to the source code specified

by a script (can root), use it to find the code:

cd $CAM ROOT/models/atm/cam/src/physics/cam
cp param cldoptics.F90 ~/tutorial/mods icldlwp

* Let’s start looking and editing
— Search for ICLDIWP as a model

What makes an output variable?
* Note that ‘ICLDIWP’ only appears 3 times:

call addfld ('ICLDIWP', 'gram/m2', pver,'A','In-cloud ice water path’, &
phys decomp, sampling seq='rad lwsw')

call add default ('ICLDIWP', 1, ' ')

call outfld('ICLDIWP' ,cicewp , pcols,lchnk)

addfld: assigns the variable (in ‘_init’ routine)
add default: adds it by default to hO (in ‘_init’)
outfld: tells the code to write a variable (cwp) to it (in ‘_tend’)

* Not going to make it default. Just need:
— addfld (init)
— outfld (tend)

— variable to put into outfld

Modify code

* Copy what is there:
—addf1ld for ICLDLWP that mirrors ICLDLWP

—outfld: what variable is used for liquid?

Modify code

 ADD: Copy what is there:

— Copy the addfld line for ICLDIWP and change it
to ICLDLWP (also the long name!)

e outfld: now copy it for ICLDIWP
— what variable is used for liquid?
cligwp
— Copy the outfld call and replace cicewp With cliqup
— Replace ICLDIWP with ICLDLWP

e Remember to ‘mark’ your additions somehow in
the code

Now Run It

* Modify run script on bluefire
* Copy and make a new script.

— Note: case name must match mods_icldlwp

— €.8. case = icldlwp

e Make sure to add ‘ICLDLWP’ to namelist in
fincll (it is not default). Might want ICLDTWP,
ICLDIWP as well

* Run the script for 3 months

Did you follow good coding standards?

(separate script, mods directories?)
Did your write down what you did?

BACK UP THIS INFORMATION!
It is usually small (scripts and source code)

Now.
| mean it.

Copy your scripts to your local machine.
cd ~/
tar cvf scripts.tar tutorial/

FTP.
We can wait. The model is running.

Visualize our new Output

* Let’s use the NCL script atm_1atlon.nc1 ONn storm
to visualize ICLDLWP at different levels

— Modify the case name and field name in the script
— Look at different levels

* Compare to ICLDTWP and ICLDIWP as well

90N

60N

30N

30S

60S

90S

New ICLDLWP

case: test_icldlwp, file: 0000-02
In-cloud liquid water path, day 59, 992.54%i6 5\bB8692e-08 max 229.353 gram/m2

180

150W 120W 90W

60W

30W 0 30E 60E 90E 120E 150E 180

60

80

100 120 140 160 180 200 220

Parameter Adjustment

Now let’s change a number to see what it
does.

Not a physical constant (gravity, pi, etc)
Could change solar constant! (we just did)
— That is another story

Let’s pick something unconstrained:

— Critical mass for auto-conversion of ice to snow:
icritc

Icritc

* The critical mass for auto-conversion controls
when ice is converted to snow

PSAUT — Cj_ja.utH(q\i T q?:-c)

* Where H is the Heavyside function that is 1
when it is positive, 0 when negative and C; . is
a constant rate. icritc = q,,

 See CAM3.0 Description document (eq 4.150)
for more info

Find the variable: icritc

Use grepccm
from a build directory: grepcem icritc
— Why so many? Look at code.
Variable is set to different values for different

configurations
— This itself indicates it is not constrained!

Copy over cldwat.F90 routine to a new mods directory
mkdir ~/tutorial/mods scam icritc
Cp [DIR*]/cldwat.F90 ~/mods scam icritc

Lets change it: value is 9.5ppm (9.5e-6)
— Higher or lower. You decide.
— What do you think it will do?

DIR*: can paste full path of routine from grepccm!

Where do | change it?

* What case are we running?
— FV 4x5
— Or SCAM: ‘eul’
* Be careful! same code will have different

values in SCAM (dy core = eul) and CAM (dy
core = FV)

* Cheat: Do it at the end of the block
e Can just copy and paste a line:

icritc = 50.e-6 r8

Check your work: output variables

e What values are used for 4x5 FV? For SCAM?
* How do you know?

* You can print the values, or the code does!

* Look at cldwat.F90 again and search for ‘icritc’

* L347: write(iulog, *) 'tuning parameters cldwat:
icritw',icritw, 'icritc',icritc, 'conke',conke

* Now look in an output file:
cd ~/tutorial

grep ‘tuning parameters cldwat’ out.*

A few more notes

* ‘masterproc’ tells it to only do the commands
on startup.

* You can output anything to the log file

* Also: you might want to rename the log file in
the script (at the top)

— Now it has job number. You could manually make

it the case name in the script. Just change:
#BSUB -0 out.%J # output filename

Notes: Coding Standards

What is with the * r8'?

Specifies to the code that the value is to be
exact for a 32 bit (4 byte, double precision)

It adds a lot of zeros in the computer,
otherwise you can end up with

40.000000032 or something
This is a compatibility issue with fortran code

— to insure that the precision is controlled

Run the new code: SCAM

Copy the SCAM script to a hew case name
€.8. scam _icritc50ppm.csh

Modify code with the right case name

scam icritc50ppm
Code has to find mods [case] directory
Run it in SCAM: use the standard arm95 case

Visualize in SCAM

* Once the scam run completes, use NCL to
visualize it on storm with scam latht.ncl

/fs/home/andrew/ncl/scam latht.ncl

* |s it different than what you have run before
(scam testorscam test01)?
* How can you really tell?
— What variable might show differences?
— Can you change contour intervals?
— What about a Difference plot (next slide)!

Visualize differences in SCAM

Let’s compare two cases: the basic SCAM case
and the one we just ran.

Do this with another NCL script (on storm):
/fs/home/andrew/ncl/scam diff latht.ncl

Copy the script

Set paths, and now set 2 case names
Run the script...

Look at the results

casel: scamtest

S C A M : D iffe r e N C e S Grid box averaged cloud ioe amount kg/kg

® 200 -
= y

2 400 5
L 600 3
Q- 800 =

* More Or IeSS ice? 0 2_2(-:'—05 1 661056| 0.010081 IO.OOIZ)OM _12

 Explore: Change case2: scamtest_icritc50ppm
COntOUF Inte rvals for _Grid box averaged cloud ice amount ka/kg
the difference plot! '

Q- 800 3

* Look at sample in

I C ﬁ ’ 2- - - = [81 [10—12
Scrlpt' an you gure 2e-05 6e-05 0.0001 0.000140.00018
. time
out how to do it? scamtest_icritc50ppm - scamtest
Grid box IalveragedI cloud iceI amountI | | kg/kg
® 200 - -
>] ! [
@ 400 ' =
L 600 =
Q- 800 =
B DL EELAEARL EELRRLRELN EELEEARELE EELRNLRNL LR
0 2 4 6 8 10 12

N T T T T T e
-0.00018e-054e-05 0 4e-058e-08.0000200016

time

Run in the full model

* Now let’s take the changes and make a new
case to run CAM

* Back to bluefire.

* Pick a case name and copy a run script for it
* Copy the mods directory to the new name
* Run for 3 months

While that is running: Diagnostics

* | already ran this case for 2 years:
/ptmp/andrew/test icritc50ppm

e Let’s go over to storm and run the diagnostics
on the difference!

Run Diagnhostics for 2 models

* Point diagnostic code to my directories on
oluefire (test_path, cntl path)

* Run and copy diagnostics over to a local
machine (see practical 2, part 2)

 What do you see?
* Can you explain the effects?

— What makes sense, what did you not expect?

Advanced: Make a Variable

* How about the minimum layer water vapor in
a column?

* |s this diagnostic or prognostic?
* How would you write it in fortran?

— generate some pseudo code (probably a loop over
i columns)

* Where in the code would you put it?

 Think about how water is modified. Where in
the physics?

Minimum Water Vapor

* Probably in the driver for the stratiform clouds
— This is the last condensation package run
— Let'stry stratiform.F90
— Also, notice lots of output
* Steps
— Addfld call in stratiform_init

* Note: find a single level field to copy! (e.g.: CDNUMC)
* Name and units (mass mixing ratio kg/kg)

— Add an array to stratiform tend (local variable)
— Near bottom of stratiform_tend fill the array

= * Remember to mark all your code changes

Min

When filling

Imum water vapor

the array

— Initialize first. (set to zero)

— Loop over columns (‘i dimension)

— Again, other code can be used as a model

After: output the new variable
— outfld call with output field and variable field

Compile anc
variable to t

run: remember to add the output
ne namelistin fincll |

Visualize as

nefore

