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Abstract. Vegetation/Ecosystem Modeling and Analysis Project (VEMAP) Phase 2
model experiments investigated the response of biogeochemical and dynamic global veg-
etation models (DGVMs) to differences in climate over the conterminous United States.
This was accomplished by simulating ecosystem processes using historical climate and
atmospheric CO2 records from 1895–1993. We evaluated the behavior of six models (Biome-
BGC, Century, GTEC, LPJ, MC1, and TEM) by comparing simulated runoff in 13 water-
sheds to gauged streamflow from the Hydro-Climatic Data Network. Metrics used to assess
the ‘‘goodness of fit’’ between simulated and observed values were: (1) Pearson’s r to evaluate
the overall data set, (2) Kendall’s t to gauge seasonality trends as derived from a time-
series analysis of monthly runoff, and (3) three measures of absolute and relative error.

We found small differences in performance among the six models over all watersheds.
However, the models yielded highly divergent results depending upon the watershed an-
alyzed. Performance of the ensemble of models in a watershed was positively correlated
with observed streamflow: models in the wettest watersheds in this study were associated
with the highest model correlations and largest absolute errors, and models in the driest
watersheds were associated with the lowest correlations and smallest absolute errors. Mean
relative error was small and nearly constant across watersheds. A bias estimator showed
that the models tended to underestimate runoff in wet watersheds and overestimate runoff
in dry watersheds. Analysis of long-term trends in runoff using a moving-average approach
demonstrated the ability of the models to reproduce temporal variation in observed data,
even though quantitative differences among models were large.

Models relying on prescribed vegetation (Biome-BGC, Century, and TEM) outper-
formed the two DGVMs (LPJ and MC1); GTEC gave the poorest fit to observations due
to the absence of an evaporation function and a snow routine. Across all 13 watersheds,
TEM ranked the highest in model performance. The validation results presented here suggest
that improvements in the simulation of hydrologic processes in land-surface models will
come, in part, from a more realistic representation of subgrid-scale soil moisture and from
a more detailed understanding and representation of subsurface processes.

Key words: Biome-BGC, Century, GTEC, LPJ, MC1, and TEM compared; climate change; dy-
namic global vegetation models; HCDN (Hydro-Climatic Data Network [USGS]); model intercom-
parisons and validation; Nash-Sutcliffe coefficient of efficiency; runoff estimation; streamflow; ter-
restrial ecosystem models; United States, conterminous; VEMAP Phase 2 model experiments; water-
sheds.

INTRODUCTION

Modeling sensitivity to altered climate conditions
is currently an important focus of the climate change
research community because of uncertainties about
the speed and extent of future shifts in temperature
and precipitation. In recent years, ecologists, resource
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managers, and policy makers have worked to identify
the potential effects of climate change on ecosystem
structure and function. While climate change studies
are proliferating, it is difficult to gauge the accuracy
of their results because these studies are modeling
novel states. Model intercomparison studies (e.g.,
Wood et al. 1998, Cramer et al. 1999) and the recon-
struction of past climates (e.g., Coe and Bonan 1997,
Claussen et al. 1999) are among the techniques that
have been used to try to assess the validity of under-
lying land-surface models used in climate change
modeling experiments. As they can highlight short-
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comings and inconsistencies, model intercomparisons
are a useful adjunct to validation but not a substitute.

One project that has combined both intercomparison
and validation in its quest to understand the responses
of terrestrial ecosystems to differences in climate over
the conterminous United States is the Vegetation/Eco-
system Modeling and Analysis Project (VEMAP). VE-
MAP’s objective has been to force biogeochemical
(i.e., ecosystem function) and biogeographical (i.e.,
ecosystem structure) models with a common set of in-
puts derived from historical climate and projected cli-
mate and atmospheric CO2 scenarios in order to un-
derstand how the models differ in attributes and re-
sponses (VEMAP Members 1995, Schimel et al. 2000).
A common set of inputs facilitates model intercom-
parison while the use of historical climate data allows
validation.

To gauge how well simulations perform requires rig-
orous assessment, and setting benchmarks against
which to measure success. Model validation is essential
to the interpretation of simulation results. It illuminates
under what circumstances a model reproduces events
accurately and under what circumstances it performs
unsatisfactorily. Validation is also critical to the im-
provement of models; the modeling community cannot
improve models if it does not know how, where, and
when they fail. Calls for the evaluation or validation
of climate and related models have been present in the
literature for decades (e.g., Willmott et al. 1985, Koster
et al. 1999, Cramer et al. 2001).

Lack of scientific consensus about which methods
are most appropriate for determining model accuracy
has been one obstacle to the widespread adoption of
validation techniques (Willmott et al. 1985, Rastetter
1996). A second challenge, which is often model or
question specific, has been determining what consti-
tutes success. Finally, few data sets are available for
model validation of continental-scale simulations of
ecological processes, particularly at appropriate spatial
and temporal scales (Scurlock et al. 1999). As Rastetter
(1996) noted, tests of long-term phenomena against
data derived from short-term experiments may be in-
appropriate because processes that dominate at one
temporal scale (e.g., months to years) may not be im-
portant to long-term behavior (e.g., decades to centu-
ries). Moreover, processes that control long-term re-
sponses may not be apparent from short-term data. It
is also well known that data to verify ecologically
meaningful variables such as evapotranspiration or net
primary production may be available at scales ranging
from leaf to plot, but scaling up to the landscape level
is fraught with uncertainty.

Before turning to the task of understanding sensitiv-
ity of land-surface processes to possible altered forc-
ings (e.g., land-use change, CO2, climate), the scientific
community must be capable of realistically simulating
past and present states. One widely accepted validation
technique in the area of land-surface modeling is to

compare simulated runoff to observed streamflow re-
cords. Streamflow serves to integrate a host of local-
and regional-scale processes, and as such is appropriate
for the validation of continental-scale simulations of
land-surface processes (e.g., Vörösmarty and Moore
1991, Abdulla et al. 1996, Bonan 1998, Arora et al.
2000, Olivera et al. 2001). Assuming a simple hydro-
logic budget where streamflow equals precipitation mi-
nus evapotranspiration, streamflow can serve as a
proxy for a wide range of hydrologic processes, in-
cluding surface and base runoff, evapotranspiration,
and precipitation. In addition, because many of these
processes are influenced by the local ecosystem and
physical properties of the areas in which they occur
(e.g., vegetation, topography, and soil hydrologic char-
acteristics), streamflow is an integrator of the physical
and natural environment.

In this study we used streamflow records as a yard-
stick against which to measure the effectiveness of six
terrestrial ecosystem models in reproducing temporal
and spatial patterns of observed runoff. We wanted to
determine under what conditions the models accurately
simulated monthly runoff and under what conditions
the models performed poorly. We evaluated the be-
havior of six VEMAP models—Biome-BGC (BGC 5
BioGeochemical Cycles; Hunt and Running 1992, Run-
ning and Hunt 1993), Century (Parton et al. 1987, 1988,
1993), Global Terrestrial Ecosystem Carbon Model
(GTEC; Post et al. 1997), Lund-Potsdam-Jena Dynamic
Global Vegetation Model (LPJ; Haxeltine and Prentice
1996, Sitch 2003), MC1 Dynamic Global Vegetation
Model (MC 5 modified Century; Daly et al. 2000),
and Terrestrial Ecosystem Model (TEM; McGuire et
al. 1992, Melillo et al. 1993, Tian et al. 2000)—by
comparing simulated runoff from the VEMAP Phase 2
historical (20th century) experiments to gauged stream-
flow from the Hydro-Climatic Data Network (HCDN;
Slack and Landwehr 1992). These streamflow obser-
vations cover much of the 20th century, providing a
lengthy record of monthly flows against which to val-
idate the models. We applied several metrics to gauge
the ‘‘goodness of fit’’ between modeled and observed
data for 13 watersheds representing a range of vege-
tation types and climate zones. In particular, we were
interested in knowing how well the models reproduced
the overall observed data set and how well they ac-
counted for seasonal differences in runoff. Our results
present an important assessment of the performance of
the water balance of the constituent VEMAP models.

METHODS

VEMAP project and models

VEMAP Phase 2 model inputs consisted of tempo-
rally infilled and spatially interpolated measured tem-
perature and precipitation data for 1895–1993 on a 0.58
of latitude 3 0.58 of longitude grid for the contermi-
nous United States (Daly et al. 1994, Kittel et al. 1997,
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TABLE 1. Summary of terrestrial ecosystem models’ hydrologic parameters.

Model†
Time
step‡

Soil
layers

Soil
depth§ Evapotranspiration\

Snow
routine¶ Baseflow#

BBGC
CENT
GTEC
LPJ
MC1
TEM

daily
monthly
daily
daily
monthly
monthly

1
up to 10
12
2

up to 10
1

variable
variable
constant
constant
variable
variable

Penman-Monteith (1973)
Linacre (1977)
none
Monteith (1995)
Linacre (1977)
Jensen-Haise (1963)

yes
yes
no
yes
yes
yes

no
yes
no
no
yes
yes

† Six VEMAP models were evaluated: BBGC 5 Biome-BioGeochemical Cycles model (Hunt and Running 1992, Running
and Hunt 1993), CENT 5 Century (Parton et al. 1987, 1988, 1993), GTEC 5 Global Terrestrial Ecosystem Carbon model
(Port et al. 1997), LPJ 5 Lund-Potsdam-Jena model (Haxeltine and Prentice 1996, Sitch 2003), MC1 5 modified Century
(Daly et al. 2000), and TEM 5 Terrestrial Ecosystem Model (McGuire et al. 1992, Melillo et al. 1993, Tian et al. 2000).
BBGC, Century, GTEC, and TEM are biogeochemical cycling models; LPJ and MC1 are dynamic global vegetation models.

‡ Time step refers to the frequency with which the hydrologic models were updated.
§ The soil depth was either constant for each grid cell or was retrieved from the VEMAP soils data set.
\ The specification of evapotranspiration method does include stomatal processes that would have been calculated inde-

pendently.
¶ Snow routines modeled snowpack accumulation and melt.
# Baseflow occurred when water reaching the bottom of the soil profile was siphoned from the water balance rather than

being added to surface runoff. Baseflow does not refer to the modeling of groundwater contributions.

FIG. 1. The 13 watersheds used in this model-validation exercise. (a) Map of the United States showing USGS eight-
digit hydrologic units and location of the selected watersheds. (b) Example of VEMAP 0.58-grid overlay on a watershed.
State codes: AZ 5 Arizona, IA 5 Iowa, MS 5 Mississippi, MT 5 Montana, NV 5 Nevada, NY 5 New York, OR 5 Oregon,
SD 5 South Dakota, TX 5 Texas, WV 5 West Virginia.

2000). Other climate forcings including solar radiation
and humidity were empirically estimated from daily
temperature and precipitation (Kittel et al. 2000). Daily
and monthly versions of the data were created to serve
the input requirements of the different terrestrial eco-
system models used in the project. Daily values were
disaggregated from the monthly records using a mod-
ified version of the stochastic weather generator WGEN
(Richardson 1981, Richardson and Wright 1984, Kittel
et al. 1995).

The VEMAP models investigated include four bio-
geochemical cycling models (Biome-BGC, Century,
GTEC, and TEM), which simulate plant production and
nutrient cycles, but rely on a static land-cover type.
For these models, land cover is based on a vegetation
map derived from Küchler’s (1975) scheme of potential
natural vegetation (Kittel et al. 1995), and has pre-
scribed levels of disturbance (e.g., fire). The two dy-
namic global vegetation models (DGVMs), LPJ and
MC1, combine biogeochemical cycling processes with
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TABLE 2. Location, climate data, and descriptive information from the HCDN (USGS’s Hydro-Climatic Data Network;
Slack and Landwehr 1992) for watersheds used in validation.

Watershed
code name†

HUC of
Gauge‡

Gauge location

Water body Latitude Longitude Elevation (m)

NY
MS
WV
IA-1
SD
IA-2

2050101
3160101
5050006
7080205

10140204
10230003

Butternut Creek
Bull Mountain Creek
Kanawha River
Cedar River
White River
Little Sioux River

42.035
33.489
38.138
41.971
43.748
42.472

275.803
288.433
281.214
291.667
299.556
295.797

475
86

820
323
792
433

TX
AZ-1
AZ-2
AZ-3
NV
MT
OR

12110106
15010010
15040004
15060103
16040101
17010204
17100303

Frio River
Virgin River
San Francisco River
Salt River
Humboldt River
Clark Fork
Umqua River

28.736
36.892
33.049
33.619
40.607
47.302
43.586

299.144
2113.92
2109.3
2110.92
2116.2
2115.09
2123.55

337
1676
2097
1887
1966
1664

756

† The station identifier used in the text (see Fig. 1 legend for state codes).
‡ The hydrologic unit code (HUC) of the watershed in which the streamflow gauge resides.
§ USGS water years start in October of the year prior to the one listed in the ‘‘first-year’’ column and end in September

of the year listed in the ‘‘last-year’’ column. In a few cases, the length of the HCDN record listed is shorter than that indicated
by the start and end dates listed because of discontinuities.

\ The total drainage area of the watershed whose streamflow is measured by the HUC gauge.
¶ The mean annual streamflow of the watershed normalized to watershed area.
# The annual rainfall measured in the vicinity of the gauge, as reported in the HCDN.

†† The dominant VEMAP vegetation type in the watershed at the start of the experiment: 3 5 maritime temperate coniferous
forest, 4 5 continental temperate coniferous forest, 5 5 cool temperate mixed forest, 6 5 warm temperate/subtropical mixed
forest, 7 5 temperate deciduous forest, 10 5 temperate mixed xeromorphic woodland, 11 5 temperate conifer xeromorphic
woodland, 13 5 temperate deciduous savanna, 14 5 warm temperate/subtropical mixed savanna, 17 5 C3 grasslands, 18 5
C4 grasslands, 20 5 temperate arid shrublands, and 21 5 subtropical arid shrublands.

dynamic biogeographical processes including succes-
sion and fire simulation. In total there are 21 VEMAP
vegetation types plus wetlands, though wetland pro-
cesses are not simulated by these models.

The formulation of hydrologic processes varies
among models. Unless otherwise specified, model soil
depth was constrained by the VEMAP soils data set,
which is spatially variable (Kittel et al. 1995). A sum-
mary of the attributes of the hydrologic models em-
bedded within each of the terrestrial ecosystem models
is presented in Table 1.

1) Biome-BGC (or BBGC in the figures and tables)
uses a single ‘‘bucket’’ model in which inputs of precip-
itation are balanced with the outputs of evapotranspiration
and runoff. The time step is daily. Evapotranspiration is
calculated using the Penman-Monteith equation (Mon-
teith 1973). There is a single soil layer and any soil water
in excess of field capacity is routed to runoff, including
that which flows out from the bottom of the soil profile.
A snow routine accumulates snow below 08C and initiates
the melt process above that temperature.

2) Century (‘‘CENT’’ in figures and tables) and MC1
share the same water-balance components. Both operate
on a monthly time step. Evapotranspiration is calculated
using Linacre (1977). There are as many as 10 soil lay-
ers, each 15 cm deep up to a depth of 60 cm and 30 cm
deep below that point. A fixed fraction of rainfall is
immediately allocated to surface runoff. The remaining
water travels through successive soil layers as field ca-
pacity is exceeded. Some of the water released by the

deepest layer enters the groundwater as the baseflow
component of runoff and some is redirected to surface
runoff via stormflow. A snow routine accumulates snow
below 08C and initiates the melt process above that tem-
perature.

3) GTEC hydrology is derived from the SUNDIAL
model (Bradbury et al. 1993). There are 12 soil layers:
0–50 cm in 5 cm increments, 50–100 cm, and 100–
200 cm. Leaching occurs as a ‘‘piston flow’’ process,
water successively filling each layer down the profile,
before draining to the layer below. Bypass flow, or
runoff, occurs if rainfall in a given period exceeds a
specified threshold value. Any water reaching the bot-
tom of the soil profile is redirected to surface runoff.
Soil water values are updated daily. There is neither
an evaporation function nor a snow routine.

4) LPJ uses monthly forcing input, but interpolates
the climate to a daily time step for all processes in-
cluding its hydrologic model. Evapotranspiration is
computed using Monteith (1995). The modified bucket
model from Neilson (1995) contains two soil layers, the
first of which is 50 cm and the second 50–150 cm. Water
in excess of field capacity (i.e., surface runoff and deep
drainage) is considered runoff. A threshold temperature
of 228C tested daily determines whether precipitation
enters the soil directly or is stored as snow.

5) The water-balance model for TEM comes from
Vörösmarty et al. (1989), with the exception that
evapotranspiration is calculated after Jensen-Haise
(1963). TEM operates on a monthly time step. It uses
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TABLE 2. Extended.

Gauge HCDN record§

Length (yr) First year Last year
Drainage

area (km2)\

Mean annual
streamflow
(mm/yr)¶

Annual
rainfall (mm)#

VEMAP
vegetation

type††

75
64

111
86
60
61

1914
1900
1878
1903
1929
1919

1988
1979
1988
1988
1988
1988

5944
11 549
23 136
17 581
25 682

7203

538.5
502.5
471.2
176.7

18.5
103.1

1041.4
1346.2
1117.6

795.02
431.8
711.2

5
6
7

13
17
18

73
59
63
75
81
72
83

1916
1930
1914
1914
1903
1912
1906

1988
1988
1988
1988
1988
1988
1988

8904
15 467

7270
12 315
13 129
28 228
12 134

14.5
14.0
26.7
65.6
27.4

236.8
551.1

584.2
406.4
459.7
558.8
228.6
457.2

1193.8

14
11
21
10
20

4
3

a single bucket model with a single soil layer whose
depth is determined by soil texture class. Runoff is
generated from subsurface runoff pools when field ca-
pacity is exceeded. Snowpack accumulates whenever
mean monthly temperature is below 21.08C; snowmelt
occurs above this temperature. TEM is unique among
the six models in that CO2 concentration and plant
growth do not affect any water-balance calculations
(i.e., neither runoff nor actual evapotranspiration re-
spond to plant processes) because the hydrologic model
is run offline and prior to the ecosystem model.

Runoff validation using USGS records

To validate VEMAP-simulated runoff, we compared
model results to the Hydro-Climatic Data Network
(HCDN; Slack and Landwehr 1992) for 13 watersheds.
The HCDN consists of streamflow gauging stations
with records retrieved from the U.S. Geological Sur-
vey’s (USGS) National Water Storage and Retrieval
System. Only stations relatively free of confounding
anthropogenic influences that would significantly alter
the ‘‘natural’’ streamflow—such as diversions, regu-
lation of flow, or changes in watershed land use—were
included in the database. The HCDN data set contains
the mean daily discharge for 1571 sites across the con-
tinental United States. The data set contains streamflow
records collected between 1874 and 1988, with an av-
erage station record length of approximately 48 years.

We initially reduced the universe of sites to just over
100 by selecting only those sites that satisfied the fol-
lowing criteria: (a) records of at least 50 years, (b)
watersheds of at least 5200 km2 whose boundaries were
completely contained within the United States, and (c)
watersheds whose noncontributing areas were less than
10%. (Non-contributing areas are closed basins within
a watershed.) The number of potential records was fur-
ther reduced by selecting watersheds that fell within a
single VEMAP vegetation type and by trying to max-
imize the range of climates represented. The 13 wa-
tersheds selected for this study range in size from 5944

to 28 228 km2 (Fig. 1). The watershed areas reported
in the HCDN differ by ,3% from that we determined
by using ArcView (ESRI, Redlands, California, USA).
Records of the 13 watersheds are 59 to 111 years long
(X̄ 5 74 years) (Table 2). In several cases, record length
is shorter than that indicated by the start and end dates
because the record was not continuous; the gauge-re-
cord-length column of Table 2 is corrected for any
missing years. Watersheds are identified by a state ab-
beviation. Also included in Table 2 are eight-digit Hy-
drologic Unit Codes (HUC) that the USGS uses to
uniquely label watersheds within the United States
Three watersheds in this study comprise solely one
HUC; the remaining 10 watersheds are composed of
two or more HUCs (see Fig. 1).

Because of differences in units and geographic for-
mats between the simulated values and observed data
we undertook two types of conversions. First we con-
verted the HCDN streamflow data from cubic feet per
second to depth values by normalizing the flow by the
area of the watershed. Hence, both observed and mod-
eled values are reported as millimeters per month per
unit area and are referred to as ‘‘runoff.’’ Second, we
used ArcView to superimpose HUCs and VEMAP grid
cells (e.g., Fig. 1b). From this we computed the fraction
of a watershed overlapping each VEMAP cell. We used
these fractions to area-weight simulated runoff; total
runoff for a watershed was the sum of weighted grid-
cell values.

All runoff values evaluated came from a single sim-
ulation of the VEMAP models. The two scenarios of
increasing (i.e., historical) and constant (i.e., 1895 val-
ue) CO2 produced nearly identical runoff data sets so
the analyses presented here are based on the increasing
CO2 simulations. This issue of runoff similarity is ex-
plored further in the Discussion, below.

Statistical analyses

Several statistical methods were used to gauge the
‘‘goodness of fit’’ between the HCDN and the simu-
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TABLE 3. Pearson product-moment correlation coefficient r, by watershed, between each of the models and the USGS’s
HCDN (Hydro-Climatic Data Network) observations.

Model†

Watershed‡

OR NY MS WV MT IA-1 IA-2 AZ-3 NV AZ-2 SD TX AZ-1

Average
r, by

model

BBGC
CENT
GTEC
LPJ
MC1
TEM

0.92
0.94
0.87
0.88
0.90
0.93

0.74
0.74
0.67
0.67
0.69
0.58

0.88
0.87
0.83
0.74
0.83
0.88

0.84
0.85
0.81
0.76
0.78
0.84

0.37
0.45

20.08
0.60
0.41
0.78

0.67
0.60
0.49
0.56
0.41
0.68

0.70
0.61
0.44
0.60
0.44
0.63

0.65
0.66
0.45
0.61
0.55
0.78

0.40
0.47
0.17
0.54
0.36
0.69

0.54
0.56
0.43
0.51
0.55
0.68

0.72
0.68
0.64
0.36
0.63
0.57

0.53
0.55
0.50
0.12
0.51
0.38

0.46
0.52
0.40
0.39
0.48
0.56

0.65
0.65
0.51
0.57
0.58
0.69

Average r, by model 0.91 0.68 0.84 0.81 0.42 0.57 0.57 0.62 0.44 0.55 0.60 0.43 0.47 0.61

† For model key, see Table 1.
‡ For watershed key, see Fig. 1 legend. Watersheds are ordered from wettest (at left) to driest (at right) based on mean

annual HCDN streamflow.

lated values in each of the 13 watersheds. The Pearson
product–moment correlation coefficient r (Sokal and
Rohlf 1995) was calculated between observed monthly
data and each simulation (six models) over the entire
period of overlap between the two (a minimum of 50
years). (In the case of WV the period of overlap is less
than the total HCDN record length because the start of
record keeping precedes the date on which the simu-
lations commence. See Table 2.) To investigate the abil-
ity of the models to reproduce seasonal (i.e., monthly)
runoff patterns within watersheds, Kendall’s coefficient
of rank correlation t (Kanji 1999) was calculated using
the average runoff of each month derived from the two
time series (again, a minimum of 50 years). These av-
erage values of monthly runoff (n 5 12, one for each
month) calculated from each of the observed and sim-
ulated data sets were independently ranked. By com-
paring the ranks assigned to successive pairs (obser-
vedi, simulatedi) and (observedj, simulatedj) of monthly
averages (e.g., ranks of February observed and simu-
lated runoff compared to January ranks) a correlation
coefficient was calculated indicating to what degree the
pattern of monthly simulated runoff mimicked that of
the observed in a given watershed.

We chose to not report significance levels for the
reasons that the monthly values of runoff exhibited
some serial correlation and because the Pearson anal-
yses were based on hundreds of observations; all the
values are ‘‘significant’’ at probability values ,0.001.
We used the Pearson and Kendall statistics solely for
descriptive purposes.

To evaluate the magnitude of differences between
observed and simulated values, several methods were
adopted to measure absolute and relative error. (1) One
error metric adopted was mean absolute error (MAE),
computed as

N

zO 2 S zO j j
j51

MAE 5
N

where Sj and Oj are monthly simulated and observed
values, respectively, and N is the number of monthly

observations (Willmott 1984). (2) Another metric used
was a bias estimator (BIAS), calculated as

¯ ¯BIAS 5 S 2 O

where S̄ and Ō are mean simulated and mean observed
values, respectively, as derived from the entire monthly
data set (Watterson et al. 1999, Wolock and McCabe
1999). (3) The Nash-Sutcliffe coefficient of efficiency
(NS; Nash and Sutcliffe 1970) is another widely used
statistic for evaluating the performance of hydrologic
models (e.g., Wilcox et al. 1990, Wolock and McCabe
1999, Peel et al. 2001, Sauquet and Leblois 2001). As
the ratio of the mean square error to the variance in
the measured data, subtracted from unity, it is com-
puted as

N
2(O 2 S )O j j

j51
NS 5 1 2 .N

2¯(O 2 O)O j
j51

NS ranges in value from minus infinity (characteristic
of a poor model) to 1 (perfect model). If the variance
of errors (numerator) is as large as the variance of the
observations (denominator) then NS 5 0; if the vari-
ance of errors exceeds observed variance then NS ,
0. If errors approach 0, then high and low flows are
well reproduced, and NS approaches 1.

The ability of the models to reproduce observed,
temporal runoff patterns in each watershed was ranked
according to each metric. An overall rank was deter-
mined by using all metrics as an index. Where we
ranked using the BIAS estimator, we used its absolute
value. In all cases, the model assigned the rank ‘‘1’’
most closely matched observed data.

Long-term trends in the data were identified by cal-
culating five-year moving averages. The moving average
of a target year was determined by averaging a five-year
span including the two calendar years before and after
a target year. Because the time series of observed data
for five of the watersheds were incomplete, the starting
date of the moving averages in these watersheds was the
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FIG. 2. Results of statistical tests used to evaluate the goodness of fit between the USGS’s HCDN data and the simulated
values in each of the 13 watersheds: (a) Pearson product–moment coefficient measuring correlation between monthly simulated
and observed runoff, plotted as the average of the six models by watershed against mean annual streamflow from the HCDN
(Hydro-Climatic Data Network) records; (b) Kendall’s t for assessing differences in the temporal pattern of monthly runoff
vs. streamflow; (c) MAE (mean absolute error) vs. streamflow; (d) BIAS (a bias estimator) vs. streamflow; (e) NS (Nash-
Sutcliffe coefficient of efficiency) vs. streamflow.

third calendar year after the data gap. We did not un-
dertake detailed statistical analyses of these trends be-
cause analyses of runoff trends in the US have been
reported elsewhere (e.g., Lettenmaier et al. 1994, Lins
and Slack 1999, McCabe and Wolock 2002) and were
not the focus of our present study. Other analyses of
long-term runoff and actual evapotranspiration trends
from the VEMAP Phase 2 experiments can be found in
Gordon and Famiglietti (in press).

Results in Tables 3–7 are ordered from wettest wa-
tershed on the left (OR) to driest on the right (AZ-1)
based on mean annual streamflow. Annual precipitation

reported in Table 2 is for the location of the gauge and
may not reflect the rainfall in the entire watershed. For
example, the gauge located in watershed MT is the
fourth driest of the 13 watersheds studied in terms of
precipitation. Yet it is the fifth wettest in terms of the
mean annual HCDN streamflow. For these reasons, we
used mean annual HCDN streamflow (in millimeters
per year to eliminate a watershed size bias) as a proxy
for wetness or dryness of a watershed. Streamflow
tends to be highly correlated with watershed precipi-
tation (Dolph and Marks 1992, Wolock and McCabe
1999, Lewis et al. 2000).



534 W. S. GORDON ET AL. Ecological Applications
Vol. 14, No. 2

FIG. 3. Seasonal pattern of observed runoff (USGS’s HCDN data) and simulated runoff (six VEMAP models), by wa-
tershed. Monthly values are averages over the entire time series. Panels are ordered by mean annual observed streamflow
from wettest (OR) to driest (AZ-1), moving down the left-hand column and then down the right-hand column of each page.
For watershed key, see Fig. 1 legend; for model key, see Table 1 footnote.

RESULTS

Monthly time-series correlation

The Pearson product–moment correlation coefficient
r of the monthly values ranged from 20.08 for GTEC
(Global Terrestrial Ecosystem Carbon model) in wa-
tershed MT to 0.94 for Century in watershed OR (Table
3). Average correlations by model, accounting for re-
sults from all 13 watersheds, ranged from a low of 0.51
for GTEC to a high of 0.69 for TEM (Terrestrial Eco-

system Model) (Table 3). Total variability was similar
for four of the six models; GTEC and LPJ (Lund-Pots-
dam-Jena Dynamic Global Vegetation Model) exhib-
ited the greatest variability in correlation coefficients
across the 13 watersheds. The average of model cor-
relations within a watershed ranged from a low of 0.42
in watershed MT to a high of 0.91 in watershed OR
(Table 3). In some watersheds, the spread of correlation
coefficients was narrow (e.g., OR and MS), while in
others it was wide (e.g., MT and NV). There was a



April 2004 535VALIDATION OF VEMAP SIMULATED RUNOFF

FIG. 3. Continued

TABLE 4. Kendall’s correlation of rank order t, by watershed, between each of the models and the USGS’s HCDN obser-
vations.

Model

Watershed

OR NY MS WV MT IA-1 IA-2 AZ-3 NV AZ-2 SD TX AZ-1
Average

t

BBGC
CENT
GTEC
LPJ
MC1
TEM

0.91
0.94
0.82
0.85
0.82
0.94

0.88
0.21
0.70
0.82
0.18
0.33

0.82
0.88
0.64
0.60
0.85
0.91

0.88
0.73
0.64
0.58
0.61
0.97

0.36
0.39

20.18
0.45
0.27
0.61

0.64
0.67
0.15
0.15
0.52
0.67

0.79
0.79
0.49
0.09
0.64
0.61

0.56
0.39
0.15
0.60
0.24
0.48

0.60
0.48
0.23
0.61
0.52
0.52

0.64
0.24

20.03
0.59
0.18
0.55

0.73
0.70
0.61
0.24
0.64
0.70

0.36
0.67
0.39

20.32
0.67

20.21

0.48
0.39
0.52
0.50
0.33
0.24

0.67
0.58
0.39
0.49
0.50
0.59

Average t 0.88 0.56 0.78 0.74 0.32 0.47 0.57 0.40 0.49 0.36 0.60 0.33 0.41 0.54

Note: Format is as in Table 3.

positive, linear relationship between the average r of
each watershed and the mean annual observed stream-
flow of that watershed (Fig. 2a; R2 5 0.67). Fig. 3
depicts monthly runoff averaged over the entire his-
torical data set for each of the observed and simulated
values. This figure makes clear the close association
between observed runoff (dark blue) and simulated run-
off (other colors). No one model consistently per-
formed the best or worst in every watershed.

Seasonal pattern correlation

The Kendall’s t analysis for seasonality yielded cor-
relations that ranged from 20.03 for the GTEC model
in watershed AZ-2 to 0.94 for both the Century and
TEM models in watershed OR (Table 4). Biome-BGC
correlations were the least variable, while GTEC and
LPJ were the most. Average correlations by model,
accounting for results from all 13 watersheds, ranged
from a low of 0.39 for GTEC to a high of 0.67 for
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FIG. 4. Annual time series of runoff from each VEMAP model and observed HCDN (USGS’s Hydro-Climatic Data
Network) data set by watershed. Five-year moving averages were calculated to smooth the data sets and make the trends
more apparent. The panels are ordered by mean annual HCDN streamflow from wettest (OR) to driest (AZ-1), moving down
the left-hand column and then down the right-hand column of each page.

Biome-BGC. The average of model correlations within
a watershed ranged from a low of 0.32 in watershed
MT to a high of 0.88 in watershed OR. In a few wa-
tersheds, the spread of correlation coefficients was nar-
row (e.g., OR and MS), but overall the Kendall’s t
results were highly variable from model to model. Cor-

relations were negative in watershed TX (for LPJ and
TEM) and watershed MT (GTEC), indicating a mod-
eled seasonality pattern opposite that of the observed.
There was a positive trend between the Kendall’s t and
mean annual observed streamflow (Fig. 2b; R2 5 0.55);
the better fit between simulated and observed stream-
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FIG. 4. Continued

TABLE 5. Mean absolute error (MAE) (in millimeters per year) calculated as the sum of the absolute differences between
each pair of observed runoff values (USGS’s HCDN data) and simulated runoff values (from one of the six models),
divided by the total number of observations, for each of the 13 watersheds.

Model

Watershed

OR NY MS WV MT IA-1 IA-2 AZ-3 NV AZ-2 SD TX AZ-1
Average

MAE

BBGC
CENT
GTEC
LPJ
MC1
TEM

19.52
20.66
40.16
37.04
32.02
22.41

35.28
23.44
24.90
32.91
23.42
26.62

21.52
16.47
22.70
25.31
20.25
18.28

20.89
12.82
19.94
23.55
14.76
18.64

18.33
15.79
29.90
16.03
19.30

9.78

8.69
10.15
14.10
12.98
14.29

7.70

7.44
6.96

13.56
8.17

11.80
6.06

5.48
4.82

20.56
4.58
9.27
3.45

1.93
1.96

11.91
1.93
3.26
1.98

2.41
2.90

25.83
2.03
6.90
1.50

1.38
2.04

11.35
1.41
4.76
1.25

6.30
4.05

13.98
1.24
9.57
1.24

1.52
1.48
8.96
1.33
2.32
1.02

11.59
9.50

19.83
12.96
13.22

9.23
Average

MAE
28.64 27.76 20.76 18.44 18.19 11.32 9.00 8.03 3.83 6.93 3.70 6.06 2.77 12.72

Note: Format is as in Table 3.

flow in the wetter watersheds can also be seen in Fig.
3. Again, no one model consistently performed the best
or worst in every watershed.

For watersheds in which snow dynamics play an im-
portant role in the annual water balance, such as NY

and MT, GTEC’s lack of a snowpack accumulation and
melt routine resulted in temporal errors in runoff (Fig.
3). GTEC overestimated runoff in the winter months
and underestimated runoff during the spring. This pat-
tern was in contrast to that observed in arid watersheds
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TABLE 6. Bias estimator (BIAS) calculated as the mean simulated runoff (from one of the six models) minus the mean
observed runoff (USGS’s HCDN data), by watershed, with the 13 watersheds ordered left to right as wettest to driest;
results are in millimeters per year.

Model

Watershed

OR NY MS WV MT IA-1 IA-2

BBGC
CENT
GTEC
LPJ
MC1
TEM

28.23
15.22
18.58
16.77
25.72
19.16

235.20
218.86
212.69
222.72
27.73

217.84

220.02
27.69

4.01
217.46

2.77
215.75

219.30
28.95
27.70

219.04
0.32

217.88

27.28
20.59
12.22

23.91
9.17

20.05

22.57
23.36

1.67
26.16

1.31
24.04

1.86
21.07

6.05
22.41

4.65
0.18

Average BIAS 14.54 219.17 29.02 212.09 1.59 22.19 1.54

where GTEC overestimated runoff most months (e.g.,
TX).

Error analyses

Mean annual error (MAE) was proportional to the
mean annual HCDN streamflow (Fig. 2c, slope 5
0.045, R2 5 0.92). Overall, the models performed sim-
ilarly with the exception of GTEC, which produced the
largest values of MAE. However, performance of the
models was highly variable from watershed to water-
shed. The average of model errors within a watershed
ranged from 9.23 to 19.83 mm/yr (Table 5). As would
be expected, the MAE values were proportional to the
relative wetness of the watersheds, with models pro-
ducing large values of MAE in wet watersheds and
small values in dry watersheds. Relative error averaged
about 4.5% and was fairly even across all watersheds
(Fig. 2c).

When results from all watersheds were considered
together, the bias estimator (BIAS) was negative for
four of the six models, indicating that they underesti-
mated runoff (Table 6). The two models for which
BIAS was positive across the watersheds, MC1 and
GTEC, had negative values in watersheds NY (both
models) and WV (GTEC). GTEC overestimated runoff
by an order of magnitude in some watersheds, skewing
the average results for those watersheds. BIAS was
positive in the watersheds with annual streamflow of
about 100 mm/yr or less; BIAS was negative in three
out of the four watersheds with annual streamflow
.400 mm/yr (Fig. 2d). In relative terms BIAS was
within about 65% in watersheds with annual stream-
flow .100 mm/yr, but exceeded 120% in some of the
driest watersheds. BIAS grew in magnitude as stream-
flow increased. As with MAE, this was anticipated as
the differences between the simulated and observed
data sets were expected to grow larger (negative or
positive) as runoff increased.

If MAE and BIAS had been similar in absolute mag-
nitude, these metrics would have indicated that a model
consistently under- or overestimated observed values.
That some MAEs for individual models were larger in
absolute magnitude than the corresponding BIAS val-
ues tells us that the models vacillated between under-

and overestimates. For example, MC1’s MAE in wa-
tershed IA-1 was 14.29 mm/yr (Table 5), an order of
magnitude larger than its BIAS of 1.31 mm/yr (Table
6). The BIAS statistic alone in this case would have
suggested the model simulated the observed values set
well. Yet, the comparison here of MAE to BIAS sug-
gests there were many errors in the simulated data that
tended to cancel each other out with overestimates be-
ing nearly equal in magnitude to underestimates, yield-
ing a BIAS much closer to 0 than to the MAE.

The Nash-Sutcliffe coefficient of efficiency, NS,
ranged from 0.74 in watershed MS (representing a rel-
atively wet watershed) for Century to 2216.70 in wa-
tershed AZ-1 (representing a relatively dry watershed)
for GTEC (Table 7). Among models, the NS of TEM
was closest to 1.0 (0.23). The NS values of the other
five models were all negative. When 0 # NS # 1, the
errors are no larger than the variance. If NS , 0, the
errors are large relative to the variance. The curvilinear
relationship between NS and mean annual HCDN
streamflow (Fig. 2e) provides evidence for a threshold
around 300–400 mm/yr of runoff. Watersheds whose
runoff exceeded the threshold yielded a positive NS
and those under the threshold yielded a negative NS.
The greatest errors relative to observed variance oc-
curred in the most arid watersheds, as might be ex-
pected.

The use of NS, MAE, and BIAS demonstrates the
different components of error, but the relative rankings
of the six models based on results averaged across all
watersheds were relatively consistent (Table 8). TEM
was the best performer, and GTEC the worst performer.
Biome-BGC and Century were ranked either second or
third, depending on which of the error measurements
was used; LPJ and MC1 ranked fourth or fifth. Rank-
ings of watersheds, based on averages across all mod-
els, were less consistent (Table 9). NS, a measure of
relative error, was lower in wetter watersheds. Both
MAE and BIAS, which measure absolute error, were
lower in drier watersheds.

Long-term trends and interannual variability

The five-year moving average charts show that there
was much variability from one watershed to the next
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TABLE 6. Extended.

Watershed

AZ-3 NV AZ-2 SD TX AZ-1 Average BIAS

21.02
0.56

18.69
22.86

6.15
22.07

21.77
20.34
10.64

20.95
1.51
0.99

20.38
1.61

25.58
21.07

6.32
21.01

20.54
0.77

11.06
21.08

3.76
20.84

6.03
3.56

13.67
20.99

9.24
20.45

0.15
0.18
8.27

20.57
1.20

20.78

26.79
21.46

8.47
24.80

4.95
23.11

3.24 1.68 5.18 2.19 5.18 1.41 20.46

during the 60- to 100-year period examined (Fig. 4).
Runoff increased both in the actual measured annual
runoff and in the simulated annual runoff in watersheds
MS, IA-1, IA-2, AZ-2, and NV. The remaining water-
sheds did not show any long-term trends.

In the majority of watersheds, the models reproduced
runoff trajectories qualitatively similar to those of the
observed data (Fig. 4). The exceptions seemed to lie
in the driest watersheds such as TX, AZ-1, SD, AZ-2,
where the simulations produced greater interannual
variability than was present in the observed data (these
results can also be inferred from Table 7). Quantitative
differences among the observed trend and the simu-
lations were apparent in all watersheds. The models
underestimated runoff in the NY, MS, WV, and IA-1
watersheds (consistent with Table 6). Overestimates oc-
curred in the remaining watersheds.

DISCUSSION

Examination of the smoothed time series shows that
correlations between observed and simulated runoff
were similar for each of the models (Fig. 4). But even
though the models were able to reproduce temporal
variability at this scale, there were considerable dif-
ferences in magnitude between observed values of run-
off and those projected by the models in each water-
shed. There was also a lot of variability in these dif-
ferences from one watershed to the next. Overall, the
greatest differences in model performance occurred not
in a single watershed but from watershed to watershed
(Tables 3–7). This is because the models were as a class
better able to reproduce observed runoff in wet water-
sheds than dry ones. While the analysis was limited to
13 watersheds, these watersheds represent a broad
range of climatic zones and vegetation types. There
was no relationship between watershed size and model
performance (data not shown). There is no reason to
believe our conclusions about model performance
would differ if additional watersheds were examined
based on the range of climate regimes represented by
the watersheds evaluated.

The BIAS estimator averaged over the entire data
set indicated that runoff was just slightly underesti-
mated, even though in the majority of watersheds run-

off was overestimated (Table 6). GTEC skewed the
watershed results considerably, as is apparent from
Figs. 3 and 4 and Table 6. By leaving surface evapo-
ration out of its model, GTEC made more water avail-
able to runoff than should have been the case, and this
was particularly important in dry areas where potential
evapotranspiration would be expected to exceed actual
evapotranspiration. Of the remaining five models only
MC1 also overestimated runoff in most watersheds. A
review of 11 land-surface models (Oki et al. 1999)
found systematic underestimation of runoff. The au-
thors primarily attributed this occurrence to the like-
lihood that rainfall gauges will underestimate precip-
itation, particularly under conditions of strong wind
and during snowstorms. VEMAP’s precipitation cli-
matology no doubt reflects similar shortcomings.

There are other reasons for the models to underes-
timate runoff. For optimal carbon fixation the models
maximize leaf area for a given climate, resulting in
increases in transpiration and reductions in runoff. Fur-
thermore, the model grid cells lack topography, and
topographic relief increases runoff. Review of the lit-
erature showed that where available moisture allows
actual evapotranspiration rates to approach potential
evapotranspiration rates, the methods used to calculate
evapotranspiration are more prone to overestimate
evapotranspiration than they are under water-limited
conditions (Vörösmarty et al. 1998). Finally, in wet
watersheds, both saturation excess runoff, and saturat-
ed/unsaturated subsurface flow are important compo-
nents of runoff generation (Atkinson et al. 2002). The
VEMAP models do not include these processes, so they
may not generate enough runoff.

The tendency for runoff to be overestimated in the
dry watersheds may best be explained by the difficul-
ties posed in modeling hydrologic processes in arid and
semi-arid regions. In these regions the hydraulic con-
ductivity of soil varies by orders of magnitude as a
function of soil moisture. Prediction of hydraulic con-
ductivity, a major control of infiltration capacity, is
particularly challenging at the dry end of the soil mois-
ture range. At the wet end, hydraulic conductivity is
bounded by a single parameter, its saturation value. At
the dry end, however, estimating hydraulic conductiv-
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TABLE 7. Nash-Sutcliffe coefficient of efficiency, NS, for the six models and 13 watersheds.

Model

Watershed

OR NY MS WV MT IA-1 IA-2

BBGC
CENT
GTEC
LPJ
MC1
TEM

0.69
0.50

20.72
20.30
20.13

0.47

20.32
0.33
0.27

20.13
0.41
0.13

0.58
0.74
0.48
0.38
0.68
0.65

0.17
0.62
0.24

20.06
0.55
0.29

20.57
20.40
22.34
20.19
21.04

0.53

0.19
0.01

20.98
20.84
21.04

0.32

20.27
0.19

22.69
20.56
21.40

0.27
Average NS 0.09 0.12 0.59 0.30 20.67 20.27 20.49

Notes: Nash-Sutcliffe (Nash and Sutcliffe 1970) is a dimensionless metric used to evaluate the performance of the models
by watershed. It is the ratio of the mean absolute error to the variance in the measured data, subtracted from unity. NS ranges
in value from minus infinity (characteristic of a poor model) to 1 (perfect model). The results are ordered by mean annual
USGS HCDN streamflow, starting with the wettest watershed on the left and ending with the driest on the right. For key to
models, see Table 1.

ity requires knowledge of additional parameters (e.g.,
Brooks and Corey 1964, van Genuchten 1980) in ad-
dition to the soil water content, and hence its simulation
is subject to considerable uncertainty. If in the dry
watersheds the models underestimated hydraulic con-
ductivities and hence infiltration capacities, too much
runoff would have resulted. This tendency could have
been exacerbated by the intense precipitation that falls
in many arid systems; a single storm can represent a
large proportion of annual rainfall. Subgrid variations
in moisture content present in natural systems but ab-
sent in the VEMAP models may have also contributed
to the models’ inability to simulate runoff well in dry
regions.

The validation of VEMAP-simulated runoff using
observed streamflow records is subject to error. None
of the models’ vegetation maps accounted for 20th cen-
tury land-use and land-cover changes. We tried to min-
imize any error this may have introduced into our val-
idations by selecting relatively unimpacted watersheds
as the basis of comparison. Nonetheless, ‘‘unimpacted’’
watersheds are still likely to have been affected by
some human disturbances that would alter hydrologic
regimes compared to natural, undisturbed conditions.
Whether human disturbance has increased or decreased
runoff is unclear. While we assumed the observed
streamflow data set was error free, this was likely not
to be the case. These data sets may include recording
errors from instrumentation, calibration errors, tran-
scription errors, and the like. Moreover, streamflow
gauges are notorious for their inaccuracies during times
of flooding or drought. Measuring streamflow in moun-
tainous terrain is also error prone as these areas are
characterized by high spatial variability. Hence, it is
difficult to place error bounds around the observed data
set.

We analyzed only the increasing CO2 scenario be-
cause, as mentioned in Methods, the two scenarios of
increasing and constant CO2 produced nearly identical
runoff results. While CO2 did increase 20% over the
time frame of the historical scenario and we might have

expected to see an increase in water-use efficiency,
there was little effect of the CO2 on the water budget
produced by the models for several reasons. One reason
is that temperature was increasing as well, which serves
to temper the water-use efficiency gains present in these
models at higher levels of CO2 (Pan et al. 1998). A
20% increase may not have been sufficiently large to
generate a detectable signal; model responses to in-
creasing CO2 in general are stronger as levels continue
to increase (Gordon and Famiglietti, in press). For
TEM, the hydrologic subroutine is decoupled from the
ecosystem model. For the other models, internal feed-
backs lead to a reduced response of the water budget
to increased CO2, because as soil water increases due
to reduced transpiration, NPP (net primary production)
is enhanced (VEMAP Members 1995, Pan et al. 1998).

While it is useful to compare and contrast the func-
tional behavior of the contributing terrestrial ecosystem
models, we have not focused on the detailed parame-
terizations and formulations of the processes being
modeled. The formulations of these processes are high-
ly diverse and complex, and a review of the efficacy
of these parameterizations is beyond the scope of this
paper. Key model differences and limitations are: (1)
only TEM, Century, and MC1 account for contributions
of rainfall to groundwater, and they do so in a simplistic
manner; (2) GTEC overestimates runoff in most wa-
tersheds, likely because of the absence of an evapo-
ration function in the model; (3) the absence of snow
accumulation and melt processes in GTEC results in
temporal errors in runoff; (4) TEM’s hydrologic model
runs independently of the ecosystem model; and (5)
limited representation of belowground hydrologic pro-
cesses in the VEMAP models probably plays a role in
model shortcomings. To expand on this last point, root-
ing depth, for instance, tends to be shallow in these
models with only a limited soil profile available to the
plants for water extraction. In studying the effect of
rooting depth on simulations of the hydrologic cycle
in a tropical catchment, Hagemann and Kleidon (1999)
found that use of the deepest rooting depths produced
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TABLE 7. Extended.

Watershed

AZ-3 NV AZ-2 SD TX AZ-1 Average NS

20.55
20.03

211.84
0.07

22.59
0.49

20.09
20.22

227.34
20.14
22.56
20.15

20.86
21.16

287.33
20.23
29.74

0.37

20.32
21.45

258.57
20.11

212.50
0.12

25.48
22.54

233.85
20.09

215.41
0.11

214.43
29.27

2216.70
25.37

222.80
20.56

21.64
20.98

233.95
20.58
25.20

0.23
22.41 25.08 216.49 212.14 29.54 244.86 27.02

TABLE 8. Rankings of each model’s relative performance based on overall results from all
13 watersheds, using two metrics and three measures of error.

Model Pearson r
Kendall’s

t MAE BIAS NS

Rank by
r, t, and

MAE

Rank by
r, t, and

BIAS

Rank by
r, t, and

NS

BBGC
CENT
GTEC
LPJ
MC1
TEM

2
2
6
5
4
1

1
3
6
5
4
2

3
2
6
4
5
1

5
1
6
3
4
2

4
3
6
2
5
1

2
3
6
5
4
1

3
2
6
5
4
1

2
3
6
4
5
1

Notes: Metrics are identified in the column heads. In ranking, ‘‘1’’ corresponds to the best-
performing model. Pearson r measures the correlation between the observed and simulated
runoff. Kendall’s t is a rank correlation used here to assess the degree of congruence in seasonal
patterns between observed and simulated values. The measures of error (Nash-Sutcliffe [NS;
Nash and Sutcliffe 1970], mean absolute error [MAE], and bias [BIAS]) were used to assess
relative and absolute errors (see Methods: Statistical analyses). The models were ranked (the
last three columns) by averaging performance based on r, t, and either MAE, BIAS, or NS.

simulated values that most closely matched observa-
tions.

The three biogeochemistry models that relied on pre-
scribed vegetation, TEM, Biome-BGC, and Century,
performed somewhat better than the two biogeography
models that generated their own vegetation, LPJ and
MC1 (Table 8). The difference is even more compelling
when one considers that Century and MC1 share the
same hydrologic model. The additional uncertainty in-
troduced by the use of dynamic global vegetation mod-
els (DGVMs) could be expected to reduce their ac-
curacy. In a recent study of six DGVMs (Cramer et al.
2001), LPJ simulated a present-day distribution of veg-
etation types that was not as rich in vegetation classes
as a satellite-derived map of contemporary natural veg-
etation types. Moreover, using VEMAP data, LPJ and
MC1 produced present-day vegetation maps differing
from one another (National Assessment Synthesis
Team 2001). The erroneous placement of vegetation
could have profound, localized effects on the water
balance. For example, afforestation generally reduces
runoff due to increases in evapotranspiration (Bosch
and Hewitt 1982). While the static vegetation models
may have done a better job of simulating current runoff,
as climate and ecological conditions continue to change
DGVMs should produce far fewer errors relative to
their static vegetation counterparts in modeling future
ecosystem and hydrologic regimes.

While the conclusions drawn about relative perfor-
mance of the six models were not much affected by
the measure of performance used (Table 8), differences
in model performance from one watershed to the next
did depend upon the measure used (Table 9). In par-
ticular, models in wet watersheds generated accurate
predictions of runoff by three of the five measures of
performance used, but MAE and absolute BIAS were
greatest in those watersheds. In dry watersheds, the
large, negative values of the Nash-Sutcliffe coefficient
of efficiency illustrated the difficulties the models had
in reproducing observed variance. The tendency of hy-
drologic models to produce more accurate results in
wet watersheds than in dry ones over a range of time-
scales has been demonstrated elsewhere (Atkinson et
al. 2002). It appears that accurate measurements of soil
properties are a necessity in dry watersheds, but play
a less integral role in wet watersheds.

The trend analysis demonstrated the ability of the
models to simulate runoff patterns correctly over the
long term even as our other analyses showed the models
producing month-to-month errors. Results of our trend
analysis are similar to those reported elsewhere in the
literature. Hubbard et al. (1997), working with HCDN
annual records, reported increases in runoff for 16 of
the 20 U.S. Geological Survey-defined water resources
regions from 1948 to 1988, with the largest increases
occurring in the southwest. Several of the watersheds
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TABLE 9. Rankings of watersheds based on ability of the ensemble of six models to simulate
runoff.

Water-
shed r t NS MAE BIAS

Rank by
r, t, and

NS

Rank by
r, t, and

MAE

Rank by
r, t, and

BIAS
Annual
HCDN

OR
NY
MS
WV
MT
IA-1

1
4
2
3

13
7

1
6
2
3

13
8

4
3
1
2
7
5

13
12
11
10

9
8

12
13
10
11

3
5

2
4
1
3

12
6

2
9
2
4

13
10

1
10

1
5

12
6

1
2
3
4
5
6

IA-2
AZ-3
NV
AZ-2
SD
TX
AZ-1

7
5

11
9
6

12
10

5
10

7
11

4
12

9

6
8
9

12
11
10
13

7
6
3
5
2
4
1

2
7
4
8
5
8
1

5
8
9

10
7

13
10

5
7
7

11
1

12
6

1
8
8

11
4

13
6

7
8
9

10
11
12
13

Notes: Metrics are identified in the column heads. All rankings are derived from averages
of the six models. A ‘‘1’’ corresponds to the watershed in which the ensemble of models was
best able to reproduce observed patterns of runoff with the smallest errors. Pearson r measures
the correlation between the observed and simulated values in each watershed. Kendall’s t is a
rank correlation used here to assess the degree of congruence in seasonal patterns between
observed and simulated values. The measures of error (Nash-Sutcliffe [NS; Nash and Sutcliffe
1970], mean absolute error [MAE], and bias [BIAS]) were used to assess relative and absolute
errors (see Methods: Statistical analyses). The watersheds were ranked by averaging model
performance based on r, t, and either MAE, BIAS, or NS. A ranking of the watersheds based
on mean annual USGS HCDN streamflow (with ‘‘1’’ being the wettest) is provided for reference.
For watershed key, see Fig. 1.

examined in this study showed increases in runoff over
the time series. In addition, several more exhibited such
a trend after 1950. The increases in runoff reported
here and elsewhere are consistent with the observation
that over the past century there has been a steady in-
crease in the frequency of days with precipitation and
in the magnitude of extreme one-day precipitation
events (Karl et al. 1996). However, runoff has not in-
creased in western portions of the United States.

Summary

In comparing simulated runoff from six models par-
ticipating in VEMAP Phase 2 to observed streamflow
records from the USGS’s Hydro-Climatic Data Net-
work (HCDN) we found small differences in perfor-
mance among the six models. However, the models
yielded highly divergent results depending upon the
watershed analyzed. The models exhibited their worst
performance in simulating runoff in arid and semi-arid
areas and came closest to reproducing the observed
data in the wettest regions. The models were able to
qualitatively simulate the observed temporal patterns
of annual runoff in each of the watersheds over the
period of analysis, though the absolute quantity of run-
off produced by the models varied widely by model.
Using monthly data, we concluded that the three mod-
els relying on prescribed vegetation (Biome-BGC, Cen-
tury, and TEM) outperformed their two DGVMs coun-
terparts (LPJ and MC1), and that GTEC gave the poor-
est fit to the observations due to the absence of an
evaporation function and a snow routine. TEM was the

overall best performer, no doubt in large part because
its hydrologic model has been independently validated
and it ran offline from the ecosystem model. The val-
idation results presented here suggest that improve-
ments in the simulation of hydrologic processes in
land-surface models will come, in part, from a more
realistic representation of subgrid scale soil moisture
and from a more detailed understanding and represen-
tation of subsurface processes (e.g., Entekhabi and
Eagleson 1989, Famiglietti and Wood 1991, 1994,
Hagemann and Kleidon 1999). Moreover, watershed-
scale streamflow routing, a topic not considered in this
study, may improve the timing of runoff and runoff
delivery at watershed outlets (Oki 1999, Olivera et al.
2001).
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